945 resultados para Fetal-growth
Resumo:
Differential regulation of suppressor of cytokine signaling-3 in the liver and adipose tissue of the sheep fetus in late gestation. Am J Physiol Regul Integr Comp Physiol 290: R1044 - R1051, 2006. First published November 10, 2005; doi: 10.1152/ajpregu. 00573.2005. - It is unknown whether the JAK/STAT/suppressor of cytokine signaling-3 (SOCS-3) intracellular signaling pathway plays a role in tissue growth and metabolism during fetal life. We investigated whether there is a differential profile of SOCS-3 expression in the liver and perirenal adipose tissue during the period of increased fetal growth in late gestation and the impact of fetal growth restriction on SOCS-3 expression in the fetal liver. We also determined whether basal SOCS-3 expression in the fetal liver and perirenal adipose tissue is regulated by endogenous fetal prolactin (PRL). SOCS-3 mRNA abundance was higher in the liver than in the pancreas, spleen, and kidney of the sheep fetus during late gestation. In the liver, SOCS-3 mRNA expression was increased (P < 0.05) between 125 (n < 4) and 145 days (n < 7) gestation and lower (P < 0.05) in growth-restricted compared with normally grown fetal sheep in late gestation. The relative expression of SOCS-3 mRNA in the fetal liver was directly related to the mean plasma PRL concentrations during a 48-h infusion of either a dopaminergic agonist, bromocriptine (n < 7), or saline (n < 5), such that SOCS-3 mRNA expression was lower when plasma PRL concentrations decreased below similar to 20 ng/ml [y = 0.99 - (2.47/x) + (4.96/x(2)); r(2) = 0.91, P < 0.0001, n < 12]. No relationship was shown between the abundance of phospho-STAT5 in the fetal liver and circulating PRL. SOCS-3 expression in perirenal adipose tissue decreased (P < 0001) between 90 - 91 (n < 6) and 140 - 145 days (n < 9) gestation and was not related to endogenous PRL concentrations. Thus SOCS-3 is differentially expressed and regulated in key fetal tissues and may play an important and tissue-specific role in the regulation of cellular proliferation and differentiation before birth.
Resumo:
Background: Published birthweight references in Australia do not fully take into account constitutional factors that influence birthweight and therefore may not provide an accurate reference to identify the infant with abnormal growth. Furthermore, studies in other regions that have derived adjusted (customised) birthweight references have applied untested assumptions in the statistical modelling. Aims: To validate the customised birthweight model and to produce a reference set of coefficients for estimating a customised birthweight that may be useful for maternity care in Australia and for future research. Methods: De-identified data were extracted from the clinical database for all births at the Mater Mother's Hospital, Brisbane, Australia, between January 1997 and June 2005. Births with missing data for the variables under study were excluded. In addition the following were excluded: multiple pregnancies, births less than 37 completed week's gestation, stillbirths, and major congenital abnormalities. Multivariate analysis was undertaken. A double cross-validation procedure was used to validate the model. Results: The study of 42 206 births demonstrated that, for statistical purposes, birthweight is normally distributed. Coefficients for the derivation of customised birthweight in an Australian population were developed and the statistical model is demonstrably robust. Conclusions: This study provides empirical data as to the robustness of the model to determine customised birthweight. Further research is required to define where normal physiology ends and pathology begins, and which segments of the population should be included in the construction of a customised birthweight standard.
Resumo:
Prolactin and the expression of suppressor of cytokine signaling-3 in the sheep adrenal gland before birth. Am J Physiol Regul Integr Comp Physiol 291: R1399-R1405, 2006. First published June 29, 2006; doi: 10.1152/ajpregu.00252.2006.-The fetal pituitary-adrenal axis plays a key role in the fetal response to intrauterine stress and in the timing of parturition. The fetal sheep adrenal gland is relatively refractory to stimulation in midgestation (90-120 days) before the prepartum activation, which occurs around 135 days gestation (term = 147 +/- 3 days). The mechanisms underlying the switch from adrenal quiescence to activation are unclear. Therefore, we have investigated the expression of suppressor of cytokine signaling-3 (SOCS-3), a putative inhibitor of tissue growth in the fetal sheep adrenal between 50 and 145 days gestation and in the adrenal of the growth-restricted fetal sheep in late gestation. SOCS-3 is activated by a range of cytokines, including prolactin (PRL), and we have, therefore, determined whether PRL administered in vivo or in vitro stimulates SOCS-3 mRNA expression in the fetal adrenal in late gestation. There was a decrease (P < 0.005) in SOCS-3 expression in the fetal adrenal between 54 and 133 days and between 141 and 144 days gestation. Infusion of the dopaminergic agonist, bromocriptine, which suppressed fetal PRL concentrations but did not decrease adrenal SOCS-3 mRNA expression. PRL administration, however, significantly increased adrenal SOCS-3 mRNA expression (P < 0.05). Similarly, there was an increase (P < 0.05) in SOCS-3 mRNA expression in adrenocortical cells in vitro after exposure to PRL (50 ng/ml). Placental and fetal growth restriction had no effect on SOCS-3 expression in the adrenal during late gestation. In summary, the decrease in the expression of the inhibitor SOCS-3 after 133 days gestation may be permissive for a subsequent increase in fetal adrenal growth before birth. We conclude that factors other than PRL act to maintain adrenal SOCS-3 mRNA expression before 133 days gestation but that acute elevations of PRL can act to upregulate adrenal SOCS-3 expression in the sheep fetus during late gestation.
Resumo:
Aborigines in remote areas of Australia have much higher rates of renal disease, as well as hypertension and cardiovascular disease, than non-Aboriginal Australians. We compared kidney findings in Aboriginal and non-Aboriginal people in one remote region. Glomerular number and mean glomerular volume were estimated with the disector/fractionator combination in the right kidney of 19 Aborigines and 24 non-Aboriginal people undergoing forensic autopsy for sudden or unexpected death in the Top End of the Northern Territory. Aborigines had 30% fewer glomeruli than non-Aborigines-202000 fewer glomeruli per kidney, or an estimated 404000 fewer per person (P=0.036). Their mean glomerular volume was 27% larger (P=0.016). Glomerular number was significantly correlated with adult height, inferring a relationship with birthweight, which, on average, is much lower in Aboriginal than non-Aboriginal people. Aboriginal people with a history of hypertension had 30% fewer glomeruli than those without-250000 fewer per kidney (P=0.03), or 500000 fewer per person, and their mean glomerular volume was about 25% larger. The lower nephron number in Aboriginal people is compatible with their susceptibility to renal failure. The additional nephron deficit associated with hypertension is compatible with other reports. Lower nephron numbers are probably due in part to reduced nephron endowment, which is related to a suboptimal intrauterine environment. Compensatory glomerular hypertrophy in people with fewer nephrons, while minimizing loss of total filtering surface area, might be exacerbating nephron loss. Optimization of fetal growth should ultimately reduce the florid epidemic of renal disease, hypertension, and cardiovascular disease.
Resumo:
Background - Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods - Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings - Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance - Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood.
Resumo:
Background—The exact etiology of preeclampsia is unknown, but there is growing evidence of an imbalance in angiogenic growth factors and abnormal placentation. Hydrogen sulfide (H2S), a gaseous messenger produced mainly by cystathionine ?-lyase (CSE), is a proangiogenic vasodilator. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Methods and Results—Plasma levels of H2S were significantly decreased in women with preeclampsia (P<0.01), which was associated with reduced placental CSE expression as determined by real-time polymerase chain reaction and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine reduced placental growth factorproduction from first-trimester (8–12 weeks gestation) human placental explants and inhibited trophoblast invasion in vitro. Knockdown of CSE in human umbilical vein endothelial cells by small-interfering RNA increased the release of soluble fms-like tyrosine kinase-1 and soluble endoglin, as assessed by enzyme-linked immunosorbent assay, whereas adenoviral-mediated CSE overexpression in human umbilical vein endothelial cells inhibited their release. Administration of DL-propargylglycine to pregnant mice induced hypertension and liver damage, promoted abnormal labyrinth vascularization in the placenta, and decreased fetal growth. Finally, a slow-releasing H2S-generating compound, GYY4137, inhibited circulating soluble fms-like tyrosine kinase-1 and soluble endoglin levels and restored fetal growth in mice that was compromised by DL-propargylglycine treatment, demonstrating that the effect of CSE inhibitor was attributable to inhibition of H2S production. Conclusions—These results imply that endogenous H2S is required for healthy placental vasculature and that a decrease in CSE/H2S activity may contribute to the pathogenesis of preeclampsia. (Circulation. 2013;127:2514-2522.)
Resumo:
Background-The exact etiology of preeclampsia is unknown, but there is growing evidence of an imbalance in angiogenic growth factors and abnormal placentation. Hydrogen sulfide (H2S), a gaseous messenger produced mainly by cystathionine γ-lyase (CSE), is a proangiogenic vasodilator. We hypothesized that a reduction in CSE activity may alter the angiogenic balance in pregnancy and induce abnormal placentation and maternal hypertension. Methods and Results-Plasma levels of H2S were significantly decreased in women with preeclampsia (P<0.01), which was associated with reduced placental CSE expression as determined by real-time polymerase chain reaction and immunohistochemistry. Inhibition of CSE activity by DL-propargylglycine reduced placental growth factorproduction from first-trimester (8-12 weeks gestation) human placental explants and inhibited trophoblast invasion in vitro. Knockdown of CSE in human umbilical vein endothelial cells by small-interfering RNA increased the release of soluble fms-like tyrosine kinase-1 and soluble endoglin, as assessed by enzyme-linked immunosorbent assay, whereas adenoviral-mediated CSE overexpression in human umbilical vein endothelial cells inhibited their release. Administration of DL-propargylglycine to pregnant mice induced hypertension and liver damage, promoted abnormal labyrinth vascularization in the placenta, and decreased fetal growth. Finally, a slow-releasing H2S-generating compound, GYY4137, inhibited circulating soluble fms-like tyrosine kinase-1 and soluble endoglin levels and restored fetal growth in mice that was compromised by DL-propargylglycine treatment, demonstrating that the effect of CSE inhibitor was attributable to inhibition of H2S production. Conclusions-These results imply that endogenous H2S is required for healthy placental vasculature and that a decrease in CSE/H2S activity may contribute to the pathogenesis of preeclampsia. © 2013 American Heart Association, Inc.
Resumo:
Background—Alterations in circulating levels of pro- and antiangiogenic factors have been associated with adverse pregnancy outcomes. Heparin is routinely administered to pregnant women, but without clear knowledge of its impact on these factors. Methods and Results—We conducted a longitudinal study of 42 pregnant women. Twenty-one women received prophylactic heparin anticoagulation, and 21 healthy pregnant women served as controls. Compared with gestational age-matched controls, heparin treatment was associated with increased circulating levels of soluble fms-like tyrosine kinase-1 (sFlt-1) in the third trimester (P<0.05), in the absence of preeclampsia, placental abruption, or fetal growth restriction. Heparin had no effect on circulating levels of vascular endothelial growth factor, placenta growth factor, or soluble endoglin as assessed by ELISA. In vitro, low-molecular weight and unfractionated heparins stimulated sFlt-1 release from placental villous explants, in a dose- and time-dependent manner. This effect was not due to placental apoptosis, necrosis, alteration in protein secretion, or increased transcription. Western blot analysis demonstrated that heparin induced shedding of the N-terminus of Flt-1 both in vivo and in vitro as indicated by a predominant band of 100–112 kDa. By using an in vitro angiogenesis assay, we demonstrated that serum of heparin-treated cases inhibited both basal and vascular endothelial growth factor-induced capillary-like tube formation. Conclusions—Heparin likely increases the maternal sFlt-1 through shedding of the extracellular domain of Flt-1 receptor. Our results imply that upregulation of circulating sFlt-1 immunoreactivity in pregnancy is not always associated with adverse outcomes, and that heparin's protective effects, if any, cannot be explained by promotion of angiogenesis.
Resumo:
Periconceptional environment may influence embryo development, ultimately affecting adult health. Here, we review the rodent model of maternal low-protein diet specifically during the preimplantation period (Emb-LPD) with normal nutrition during subsequent gestation and postnatally. This model, studied mainly in the mouse, leads to cardiovascular, metabolic and behavioural disease in adult offspring, with females more susceptible. We evaluate the sequence of events from diet administration that may lead to adult disease. Emb-LPD changes maternal serum and/or uterine fluid metabolite composition, notably with reduced insulin and branched-chain amino acids. This is sensed by blastocysts through reduced mammalian target of rapamycin complex 1 signalling. Embryos respond by permanently changing the pattern of development of their extra-embryonic lineages, trophectoderm and primitive endoderm, to enhance maternal nutrient retrieval during subsequent gestation. These compensatory changes include stimulation in proliferation, endocytosis and cellular motility, and epigenetic mechanisms underlying them are being identified. Collectively, these responses act to protect fetal growth and likely contribute to offspring competitive fitness. However, the resulting growth adversely affects long-term health because perinatal weight positively correlates with adult disease risk. We argue that periconception environmental responses reflect developmental plasticity and 'decisions' made by embryos to optimise their own development, but with lasting consequences.
Resumo:
Life's perfect partnership starts with the placenta. If we get this right, we have the best chance of healthy life. In preeclampsia, we have a failing placenta. Preeclampsia kills one pregnant woman every minute and the life expectancy of those who survive is greatly reduced. Preeclampsia is treated roughly the same way it was when Thomas Edison was making the first silent movie. Globally, millions of women risk death to give birth each year and almost 300,000 lose their lives in this process. Over half a million babies around the world die each year as a consequence of preeclampsia. Despite decades of research, we lack pharmacological agents to treat it. Maternal endothelial dysfunction is a central phenomenon responsible for the clinical signs of preeclampsia. In the late nineties, we discovered that vascular endothelial growth factor (VEGF) stimulated nitric oxide release. This led us to suggest that preeclampsia arises due to the loss of VEGF activity, possibly due to a rise in soluble Flt-1 (sFlt-1), the natural antagonist of VEGF. Researchers have shown that high sFlt-1 elicits preeclampsia-like signs in pregnant rats and sFlt-1 increases before the clinical signs of preeclampsia in pregnant women. We demonstrated that removing or reducing this culprit protein from preeclamptic placenta restored the angiogenic balance. Heme oxygenase-1 (HO-1 or Hmox1) that generates carbon monoxide (CO), biliverdin (rapidly converted to bilirubin) and iron is cytoprotective. We showed that the Hmox1/CO pathway prevents human placental injury caused by pro-inflammatory cytokines and suppresses sFlt-1 and soluble endoglin release, factors responsible for preeclampsia phenotypes. The other key enzyme we identified is the hydrogen sulfide generating cystathionine-gamma-lyase (CSE or Cth). These are the only two enzyme systems shown to suppress sFlt-1 and to act as protective pathways against preeclampsia phenotypes in animal models. We also showed that when hydrogen sulfide restores placental vasculature, it also improves lagging fetal growth. These molecules act as the inhibitor systems in pregnancy and when they fail, this triggers preeclampsia. Discovering that statins induce these enzymes led us to an RCT to develop a low-cost therapy (StAmP Trial) to prevent or treat preeclampsia. If you think of pregnancy as a car then preeclampsia is an accelerator–brake defect disorder. Inflammation, oxidative stress and an imbalance in the angiogenic milieu fuel the ‘accelerator’. It is the failure in the braking systems (the endogenous protective pathway) that results in the ‘accelerator’ going out of control until the system crashes, manifesting itself as preeclampsia.
Resumo:
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Resumo:
Plusieurs études se sont penchées sur les effets de l’activité physique maternelle sur le poids du nouveau-né, un paramètre reflétant l’environnement intra-utérin associé au risque ultérieur d’obésité et de problèmes métaboliques. Devant les taux alarmants d’obésité infantile à travers le monde, l’identification d’interventions préventives efficaces devient un enjeu majeur dans la lutte contre l’obésité et ses complications. L’activité physique maternelle pourrait être une avenue intéressante, étant donné ses effets bénéfiques sur le gain de poids et le profil métabolique maternels et son potentiel de diminution du poids de naissance de l’enfant. Cependant, la dose optimale d’activité physique et ses effets sur la composition corporelle du nouveau-né sont encore méconnus. Par ailleurs, la majorité des femmes enceintes ne rencontrent pas les recommandations en matière d’activité physique durant la grossesse et les femmes obèses, chez qui les bienfaits de l’activité physique pourraient possiblement avoir le plus grand impact, présentent souvent les niveaux les plus bas. Curieusement, peu d’études ont évalué les effets d’une intervention d’activité physique durant la grossesse dans cette population. Ainsi, avant d’envisager l’activité physique comme une intervention thérapeutique non-pharmacologique durant la grossesse, il importe d’en évaluer la faisabilité et la sécurité et d’en connaître extensivement les effets. Notamment, il s’avère primordial de vérifier s’il est possible d’augmenter en toute sécurité les niveaux d’activité physique durant la grossesse, particulièrement chez les femmes obèses, et de distinguer les effets spécifiques de différents stimuli d’activité physique (variant en type, volume, intensité et moment de la grossesse) sur la croissance fœtale. Dans ce contexte, nous avons dans un premier temps entrepris une revue systématique de la littérature des études observationnelles portant sur l’association entre l’activité physique maternelle et les paramètres de croissance fœtale mesurés à la naissance. Dans un deuxième temps, 2 études de cohortes évaluant l’impact du type, du volume, de l’intensité et du trimestre de pratique de l’activité physique ont été menées afin de complémenter et d’approfondir les résultats de la revue systématique. Finalement, une étude d’intervention randomisée a été réalisée afin d’évaluer s’il est possible d’améliorer les niveaux d’activité physique durant la grossesse chez les femmes enceintes obèses. Nos travaux ont permis d’illustrer l’influence variable que différents stimuli d’activité physique maternelle peuvent avoir sur l’anthropométrie néonatale. La revue systématique a montré qu’un volume moyen d’activité physique est associé à une augmentation du poids de naissance comparativement à un volume plus faible, alors qu’un volume élevé est associé à une diminution du poids de naissance, comparativement à un volume plus faible. Nos données suggèrent également que l’association entre l’activité physique maternelle et le poids de naissance varie en présence de certaines caractéristiques maternelles. Notamment, nous avons montré pour la première fois que l’activité physique vigoureuse pratiquée en début de grossesse était associée à une diminution importante du poids de naissance chez les femmes qui reçoivent un diagnostic de pré-éclampsie en fin de grossesse. L’importance de l’intensité de l’activité physique dans la relation entre l’activité physique maternelle et la croissance fœtale a également été soulignée pour la première fois dans notre étude de cohorte avec mesure de la composition corporelle néonatale. Contrairement à l’activité physique d’intensité modérée, l’activité physique vigoureuse en début de grossesse est associée à une diminution du poids de naissance, principalement en raison d’une adiposité néonatale réduite. Finalement, les résultats de l’essai randomisé ont permis d’établir la faisabilité d’une intervention d’activité physique supervisée visant à augmenter la pratique d’activité physique chez des femmes enceintes obèses et le potentiel d’une telle intervention à favoriser le maintien de la condition physique et une meilleure gestion du gain de poids chez ces femmes. L’ensemble de ces résultats permet de mieux cerner l’impact de l’activité physique maternelle sur la croissance fœtale, en fonction des caractéristiques spécifiques du stimulus d’activité physique mais également de la population étudiée. La faisabilité d’une intervention d’activité physique prénatale dans une population de femmes obèses laisse entrevoir de nouvelles possibilités dans la prévention de l’obésité infantile et de ses complications. L’identification d’une dose optimale d’activité physique favorisant la santé de l’enfant à court et à long terme dans diverses populations de femmes enceintes et l’identification des facteurs permettant une meilleure adhérence aux recommandations qui en découleront constituent des pistes de recherche essentielles à la lutte contre l’obésité.
Resumo:
Résumé: Le surpoids et l’obésité dans la population pédiatrique sont des préoccupations grandissantes à l’échelle mondiale. Actuellement, au Canada, près de 21 % des jeunes Canadiens âgés de 2 à 5 ans présentent un surpoids et malheureusement, 6 % d’entre eux souffrent d’obésité. De plus, 80 % de ces enfants risquent d’être obèses à l’âge adulte, ce qui mène à plusieurs impacts sur la santé. Afin de prévenir l’obésité infantile, il est important d’identifier des facteurs de risques, notamment ceux se produisant tôt dans la vie. Plusieurs études ont démontré l’importance de l’environnement fœtal dans l’établissement de la santé métabolique à long terme. Le poids à la naissance a souvent été utilisé comme marqueur de l’exposition prénatale. Cependant, le poids à la naissance n’est qu’un marqueur grossier. L’adiposité à la naissance a été identifiée comme un facteur de risque plus important puisqu’elle permet de prédire de l’adiposité durant l’enfance. Les deux déterminants maternels majeurs de la croissance fœtale sont le statut pondéral et la glycémie maternelle. Récemment, une adipokine a été suggérée comme un déterminant potentiel dans la programmation fœtale de l’obésité. La leptine, qui est produite par les adipocytes, joue un rôle important dans la balance énergétique, mais elle semble aussi importante dans le développement de l’obésité postnatale. Durant la grossesse, le placenta produit une large quantité de leptine et la majorité est sécrétée du côté maternel. Appuyés par le fait que la leptine maternelle circulante est le reflet de la sécrétion placentaire de leptine, nous avons émis l’hypothèse que la leptine maternelle serait associée à l’adiposité du nouveau-né, et ce, indépendamment de la glycémie maternelle. Nous avons étudié la leptine durant l’hyperglycémie provoquée par voie orale (HGPO) chez les femmes enceintes au 2e trimestre. Nous avons montré, chez les femmes en surpoids ou obèse, qu’une plus haute leptine maternelle était lié à une adiposité néonatale augmentée à la naissance. D’un autre côté, chez les femmes minces, une glycémie élevée était liée à une adiposité néonatale augmentée. Ces associations sont indépendantes de la parité, du statut tabagique, du gain de poids durant la grossesse, des triglycérides maternels, du mode d’accouchement, du sexe du nouveau-né et de l’âge gestationnel à la naissance. Ces résultats suggèrent une régulation différentielle entre ces deux marqueurs métaboliques maternels et l’adiposité néonatale, selon le statut pondéral pré-grossesse.
Resumo:
Se realizó un estudio transversal en el Hospital Vicente Corral de Cuenca (Ecuador) en febrero-agosto de 2013, para la valoración de las curvas intrauterino del Centro Latinoamericano de Atención Perinatal (CLAP), Olsen, Alarcón-Pittaluga, Lubchenco-Bataglia y Babson-Benda con el objetivo de identificar el patrón antropométrico de crecimiento fetal más adecuado para la clasificación de los recién nacidos hasta que el Ecuador cuente con patrones propios. La muestra se conformó con neonatos, cuyas madres eran menores de 21 años. Se incluyó a niños nacidos vivos, con edad gestacional entre 22 y 42 semanas cumplidas y que contaron con todas las medidas antropométricas. Se excluyó a niños con malformaciones congénitas mayores. Se valoraron la sensibilidad, especificidad e índice kappa de Cohen de las curvas antropométricas estudiadas según las variables peso, talla, perímetro cefálico y sexo del recién nacido. Las curvas del CLAP (36.6-43.5%) y de Olsen (37.0-40.9%) identificaron porcentajes similares de PEG15. Las curvas de Babson-Benda detectaron muy pocos PEG (1.3-2.8%). Para la variable peso: las curvas de Olsen presentaron alta sensibilidad (81.8-97.6%), muy altas especificidad (91.8-97.5%) e índice kappa (0.807-0.873). Las curvas de Alarcón-Pittaluga tuvieron muy buena sensibilidad (98.2-99.5%); buena especificidad (74.9-77.9%) e índice kappa (0.707-0.717). Las curvas de Lubchenco-Bataglia presentaron baja sensibilidad (40.0-42.8%), muy buena especificidad (99.3-100.0%) y moderado índice kappa (0.449-458). Las curvas de Babson-Benda presentaron muy baja sensibilidad (3.5-6.4%), muy buena especificidad (100.0%) y pobre índice kappa (0.044-0.072). Se concluye que se deben utilizar las curvas antropométricas de Olsen hasta que el Ecuador cuente con curvas propias. No se recomienda utilizar las curvas de Babson-Benda ni de Lubchenco-Bataglia.
Resumo:
During pregnancy, the maternal cardiovascular system undergoes major adaptation. One of these changes is a 40-50 % increase in circulating blood volume which requires a systemic remodelling of the vasculature in order to regulate maternal blood pressure and maximise blood supply to the developing placenta and fetus. These changes are broadly conserved between humans and rats making them an appropriate pre-clinical model in which to study the underlying mechanisms of pregnancy-dependent cardiovascular remodelling. Whilst women are normally protected against cardiovascular disease; pregnancy marks a period of time where women are susceptible to cardiovascular complications. Cardiovascular disease is the leading cause of maternal mortality in the United Kingdom; in particular hypertensive conditions are among the most common complications of pregnancy. One of the main underlying pathologies of these pregnancy complications is thought to be a failure of the maternal cardiovascular system to adapt. The remodelling of the uterine arteries, which directly supply the maternal-fetal interface, is paramount to a healthy pregnancy. Failure of the uterine arteries to remodel sufficiently can result in a number of obstetric complications such as preeclampsia, fetal growth restriction and spontaneous pregnancy loss. At present, it is poorly understood whether this deficient vascular response is due to a predisposition from existing maternal cardiovascular risk factors, the physiological changes that occur during pregnancy or a combination of both. Previous work in our group employed the stroke prone spontaneously hypertensive rat (SHRSP) as a model to investigate pregnancy-dependent remodelling of the uterine arteries. The SHRSP develops hypertension from 6 weeks of age and can be contrasted with the control strain, the Wistar Kyoto (WKY) rat. The phenotype of the SHRSP is therefore reflective of the clinical situation of maternal chronic hypertension during pregnancy. We showed that the SHRSP exhibited a deficient uterine artery remodelling response with respect to both structure and function accompanied by a reduction in litter size relative to the WKY at gestational day (GD) 18. A previous intervention study using nifedipine in the SHRSP achieved successful blood pressure reduction from 6 weeks of age and throughout pregnancy; however uterine artery remodelling and litter size at GD18 was not improved. We concluded that the abnormal uterine artery remodelling present in the SHRSP was independent of chronic hypertension. From these findings, we hypothesised that the SHRSP could be a novel model of spontaneously deficient uterine artery remodelling in response to pregnancy which was underpinned by other as yet unidentified cardiovascular risk factors. In Chapter 1 of this thesis, I have characterised the maternal, placental and fetal phenotype in pregnant (GD18) SHRSP and WKY. The pregnant SHRSP exhibit features of left ventricular hypertrophy in response to pregnancy and altered expression of maternal plasma biomarkers which have been previously associated with hypertension in human pregnancy. I developed a protocol for accurate dissection of the rat uteroplacental unit using qPCR probes specific for each layer. This allowed me to make an accurate and specific statement about gene expression in the SHRSP GD18 placenta; where oxidative stress related gene markers were increased in the vascular compartments. The majority of SHRSP placenta presented at GD18 with a blackened ring which encircled the tissue. Further investigation of the placenta using western blot for caspase 3 cleavage determined that this was likely due to increased cell death in the SHRSP placenta. The SHRSP also presented with a loss of one particular placental cell type at GD18: the glycogen cells. These cells could have been the target of cell death in the SHRSP placenta or were utilised early in pregnancy as a source of energy due to the deficient uterine artery blood supply. Blastocyst implantation was not altered but resorption rate was increased between SHRSP and WKY; indicating that the reduction in litter size in the SHRSP was primarily due to late (>GD14) pregnancy loss. Fetal growth was not restricted in SHRSP which led to the conclusion that SHRSP sacrifice part of their litter to deliver a smaller number of healthier pups. Activation of the immune system is a common pathway that has been implicated in the development of both hypertension and adverse pregnancy outcome. In Chapter 2, I proposed that this may be a mechanism of interest in SHRSP pregnancy and measured the pro-inflammatory cytokine, TNFα, as a marker of inflammation in pregnant SHRSP and WKY and in the placentas from these animals. TNFα was up-regulated in maternal plasma and urine from the GD18 SHRSP. In addition, TNFα release was increased from the GD18 SHRSP placenta as was the expression of the pro-inflammatory TNFα receptor 1 (Tnfr1). In order to investigate whether this excess TNFα was detrimental to SHRSP pregnancy, a vehicle-controlled intervention study using etanercept (a monoclonal antibody which works as a TNFα antagonist) was carried out. Etanercept treatment at GD0, 6, 12 and 18 resulted in an improvement in pregnancy outcome in the SHRSP with an increased litter size and reduced resorption rate. Furthermore, there was an improved uterine artery function in GD18 SHRSP treated with etanercept which was associated with an improved uterine artery blood flow over the course of gestation. In Chapter 3, I sought to identify the source of this detrimental excess of TNFα by designing a panel for maternal leukocytes in the blood and placenta at GD18. A population of CD3- CD161+ cells, which are defined as rat natural killer (NK) cells, were increased in number in the SHRSP. Intracellular flow cytometry also identified this cell type as a source of excess TNFα in blood and placenta from pregnant SHRSP. I then went on to evaluate the effects of etanercept treatment on these CD3- CD161+ cells and showed that etanercept reduced the expression of CD161 and the cytotoxic molecule, granzyme B, in the NK cells. Thus, etanercept limits the cytotoxicity and potential damaging effect of these NK cells in the SHRSP placenta. Analysing the urinary peptidome has clinical potential to identify novel pathways involved with disease and/or to develop biomarker panels to aid and stratify diagnosis. In Chapter 4, I utilised the SHRSP as a pre-clinical model to identify novel urinary peptides associated with hypertensive pregnancy. Firstly, a characterisation study was carried out in the kidney of the WKY and SHRSP. Urine samples from WKY and SHRSP taken at pre-pregnancy, mid-pregnancy (GD12) and late pregnancy (GD18) were used in the peptidomic screen. In order to capture peptides which were markers of hypertensive pregnancy from the urinary peptidomic data, I focussed on those that were only changed in a strain dependent manner at GD12 and 18 and not pre-pregnancy. Peptide fragments from the uromodulin protein were identified from this analysis to be increased in pregnant SHRSP relative to pregnant WKY. This increase in uromodulin was validated at the SHRSP kidney level using qPCR. Uromodulin has previously been identified to be a candidate molecule involved in systemic arterial hypertension but not in hypertensive pregnancy thus is a promising target for further study. In summary, we have characterised the SHRSP as the first model of maternal chronic hypertension during pregnancy and identified that inflammation mediated by TNFα and NK cells plays a key role in the pathology. The evidence presented in this thesis establishes the SHRSP as a pre-clinical model for pregnancy research and can be continued into clinical studies in pregnant women with chronic hypertension which remains an area of unmet research need.