150 resultados para Ferrites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho apresenta um estudo teórico sobre novos circuladores compactos com 3-portas tipos W e Y, baseados em cristais fotônicos bidimensionais. No circulador tipo Y, os guias de onda que o compõem formam ângulos de 120° entre si (com formato assemelhado ao da letra Y). O circulador tipo W é uma modificação do tipo Y, obtido a partir do reposicionamento de uma das portas entre as outras duas com um ângulo de 60° entre os guias de onda (com formato assemelhado ao da letra W). Os parâmetros geométricos dos cristais foram obtidos dos diagramas de bandas proibidas. O circulador de três portas tipo Y, projetado para operar em frequências de micro-ondas, foi investigado com o objetivo de gerar um protótipo inédito, enquanto que o tipo W, para frequências ópticas, foi investigado para demonstrar a possibilidade de desenvolver um circulador mais compacto em comparação com o tipo Y conhecido. O tipo W pode ser também uma alternativa geométrica mais adequada no design de circuitos integrados. Os modelos são bons no sentido em que possuem elevada isolação (maior que -20 dB em ambos os circuladores) e baixa perda de inserção (maior que -0,5 dB no caso do circulador tipo Y). O circulador tipo W apresenta uma largura de banda de operação em torno de 100 GHz para um nível de -20 dB de isolação, centrado no comprimento de onda de 1,5um. As simulações foram feitas utilizando-se o software comercial COMSOL Multiphysics, o qual se baseia no método dos elementos finitos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hysteresis loss subdivision method proved to be a strong tool to help in the analysis of different energy dissipation mechanisms along the quasi-static hysteresis loop measured on electrical steels. This paper used the samemethod to discuss the mechanisms involving the energy loss dissipation in Mn-Zn ferrite toroidal cores. The samples, sintered under controlled atmosphere in industrial conditions, were measured under triangular waveform excitation at very low frequency (5 mHz) and peak flux densities varying from 0.05 T to 0.45 T. The results show a different behavior between the low inductions hysteresis loss (WLI) and the high induction hysteresis loss (WHI) which proves the existence of different energy dissipation mechanisms affecting these loss components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cobalt ferrite is a ferrimagnetic magnetostrictive ceramic that has potential application in magnetoelastic and magnetoelectric transducers. In this work, CoFe2O4 was obtained using a conventional ceramic method and Bi2O3 was used as additive in order to obtain liquid-phase sintered samples. Bi2O3 was added to the ferrite in amounts ranging from 0.25 mol% to 0.45 mol% and samples were sintered at 900 degrees C and 950 degrees C. It was observed the presence of Bi-containing particles in the microstructure of the sintered samples and the magnetostriction results indicated microstructural anisotropy. It was verified that it is possible to get dense cobalt ferrites, liquid-phase sintered, with relative densities higher than 90% and with magnetostriction values very close to samples sintered without additives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-phase polycrystalline mixed nickel-zinc ferrites belonging to Ni0.5Zn0.5Fe2O4 were prepared on a nanometric scale (mean crystallite size equal to 14.7 nm) by chemical synthesis named the modified poliol method. Ferrite nanopowder was then incorporated into a natural rubber matrix producing nanocomposites. The samples were investigated by means of infrared spectroscopy, X-ray diffraction, scanning electron microscopy and magnetic measurements. The obtained results suggest that the base concentration of nickel-zinc ferrite nanoparticles inside the polymer matrix volume greatly influences the magnetic properties of nanoconnposites. A small quantity of nanoparticles, less than 10 phr, in the nanocomposite is sufficient to produce a small alteration in the semi-crystallinity of nanocomposites observed by X-ray diffraction analysis and it produces a flexible magnetic composite material with a saturation magnetization, a coercivity field and an initial magnetic permeability equal to 3.08 emu/g, 99.22 Oe and 9.42 X 10(-5) respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work deals with a study on the feasibility of a new process, aimed at the production of hydrogen from water and ethanol (a compound obtained starting from biomasses), with inherent separation of hydrogen from C-containing products. The strategy of the process includes a first step, during which a metal oxide is contacted with ethanol at high temperature; during this step, the metal oxide is reduced and the corresponding metallic form develops. During the second step, the reduced metal compound is contacted at high temperature with water, to produce molecular hydrogen and with formation of the original metal oxide. In overall, the combination of the two steps within the cycle process corresponds to ethanol reforming, where however COx and H2 are produced separately. Various mixed metal oxides were used as electrons and ionic oxygen carriers, all of them being characterized by the spinel (inverse) structure typical of Me ferrites: MeFe2O4 (Me=Co, Ni, Fe or Cu). The first step was investigated in depth; it was found that besides the generation of the expected CO, CO2 and H2O, the products of ethanol anaerobic oxidation, also a large amount of H2 and coke were produced. The latter is highly undesired, since it affects the second step, during which water is fed over the pre-reduced spinel at high temperature. The behavior of the different spinels was affected by the nature of the divalent metal cation; magnetite was the oxide showing the slower rate of reduction by ethanol, but on the other hand it was that one which could perform the entire cycle of the process more efficiently. Still the problem of coke formation remains the greater challenge to solve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work investigates the feasibility of a new process aimed at the production of hydrogen with inherent separation of carbon oxides. The process consists in a cycle in which, in the first step, a mixed metal oxide is reduced by ethanol (obtained from biomasses). The reduced metal is then contacted with steam in order to split the water and sequestrating the oxygen into the looping material’s structure. The oxides used to run this thermochemical cycle, also called “steam-iron process” are mixed ferrites in the spinel structure MeFe2O4 (Me = Fe, Co, Ni or Cu). To understand the reactions involved in the anaerobic reforming of ethanol, diffuse reflectance spectroscopy (DRIFTS) was used, coupled with the mass analysis of the effluent, to study the surface composition of the ferrites during the adsorption of ethanol and its transformations during the temperature program. This study was paired with the tests on a laboratory scale plant and the characterization through various techniques such as XRD, Mössbauer spectroscopy, elemental analysis... on the materials as synthesized and at different reduction degrees In the first step it was found that besides the generation of the expected CO, CO2 and H2O, the products of ethanol anaerobic oxidation, also a large amount of H2 and coke were produced. The latter is highly undesired, since it affects the second step, during which water is fed over the pre-reduced spinel at high temperature. The behavior of the different spinels was affected by the nature of the divalent metal cation; magnetite was the oxide showing the slower rate of reduction by ethanol, but on the other hand it was that one which could perform the entire cycle of the process more efficiently. Still the problem of coke formation remains the greater challenge to solve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this doctoral thesis is a facile procedure, thermal decomposition, forrnthe synthesis of different types of monodisperse heterodimer M@iron oxide (M= Cu, Co, Nirnand Pt) and single ferrites, MFe2O4 (M= Cu and Co), nanoparticles. In the following chapter,rnwe study the synthesis of these monodiperse nanoparticles with the similar iron precursorrn(iron pentacarbonyl) and different transition metal precursors such as metalrnacetate/acetylacetonate/formate precursors in the presence of various surfactants and solvents.rnAccording to their decomposition temperatures and reducing condition, a specific and suitablernroute was designed for the formation of Metal@Metal oxide or MFe2O4 nanoparticlesrn(Metal/M=transition metal).rnOne of the key purposes in the formation of nanocrystals is the development of syntheticrnpathways for designing and controlling the composition, shape and size of predictedrnnanostructures. The ability to arrange different nanosized domains of metallic and magneticrnmaterials into a single heterodimer nanostructure offers an interesting direction to engineerrnthem with multiple functionalities or enhanced properties of one domain. The presence andrnrole of surfactants and solvents in these reactions result in a variety of nanocrystal shapes. Therncrystalline phase, the growth rate and the orientation of growth parameters along certainrndirections of these structures can be chemically modulated by using suitable surfactants. In allrnnovel reported heterodimer nanostructures in this thesis, initially metals were preformed andrnthen by the injection of iron precursor in appropriate temperature, iron oxide nanoparticlesrnwere started to nucleate on the top or over the surfaces of metal nanoparticles. Ternary phasesrnof spherical CuxFe3-xO4 and CoFe2O4 ferrites nanoparticles were designed to synthesis just byrnlittle difference in diffusion step with the formation of mentioned phase separated heterodimerrnnanoparticles. In order to use these magnetic nanoparticles in biomedical and catalysisrnapplications, they should be transferred into the water phase solution, therefore they werernfunctionalized by a multifunctional polymeric ligand. These functionalized nanoparticles werernstable against aggregation and precipitation in aqueous media for a long time. Magneticrnresonance imaging and catalytic reactivities are two promising applications which have beenrnutilized for these magnetic nanoparticles in this thesis.rnThis synthetic method explained in the following chapters can be extended to the synthesis ofrnother heterostructured nanomaterials such as Ni@MnO or M@M@iron oxide (M=transitionrnmetal) or to use these multidomain particles as building blocks for higher order structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work deals with a study on the feasibility of a new process, aimed at the production of hydrogen from water and ethanol (a compound obtained starting from biomasses), with inherent separation of hydrogen from C-containing products. The strategy of the process includes a first step, during which a metal oxide is contacted with ethanol at high temperature; during this step, the metal oxide is reduced and the corresponding metallic form develops. During the second step, the reduced metal compound is contacted at high temperature with water, to produce molecular hydrogen and with formation of the original metal oxide. In overall, the combination of the two steps within the cycle process corresponds to ethanol reforming, where however COx and H2 are produced separately. Various mixed metal oxides were used as electrons and ionic oxygen carriers, all of them being characterized by the spinel structure typical of M-modified non-stoichiometric ferrites: M0,6Fe2,4O4 (M = Co, Mn or Co/Mn). The first step was investigated in depth; it was found that besides the generation of the expected CO, CO2 and H2O, the products of ethanol anaerobic oxidation, also a large amount of H2 and coke were produced. The latter is highly undesired, since it affects the second step, during which water is fed over the pre-reduced spinel at high temperature. The behavior of the different spinels was affected by the nature of the divalent metal cation. The new materials were tested in terms of both redox proprieties and catalytic activity to generate hydrogen. Still the problem of coke formation remains the greater challenge to solve.