302 resultados para Fats
Resumo:
Olive oil, an important component of the Mediterranean diet, is rich in polyphenols and is known to possess positive health effects relative to other dietary fats. In addition, the leaves of the olive plant (Olea europaea) contain similar phenolics (oleuropein, luteolin-7-glucoside, apigenin-7-glucoside, verbascoside and hydroxytyrosol) to those of olives and olive oil, although at higher concentrations. For example, the most abundant is the secoiridoid, oleuropein, representing 1–14% of olive leaf weight vs. 0.005–0.12% in olive oil. Although currently considered a waste product of the olive oil industry, recent research has suggested beneficial effects of phenolic-rich olive leaf extracts (OLE) in modifying cardiovascular risk biomarkers such as blood pressure, hyperglycaemia, oxidative stress and inflammation, as well as improving vascular function and lipid profiles. Despite this, data regarding the biological actions of OLE has mostly derived from animal, in vitro and ex vivo studies, with limited evidence deriving from human trials. Although the absorption and metabolism of olive oil phenolics has been investigated, less is known about the bioavailability of phenolics from OLE, limiting the interpretation of existing in vitro and ex vivo data. The current review will begin by describing the phenolic composition of olive leaves in comparison with that of the better studied olive oil. It will then review the effects of OLE on cardiovascular risk factors, covering both animal and human studies and will end by considering potential mechanisms of action
Resumo:
The facilitation of healthier dietary choices by consumers is a key element of government strategies to combat the rising incidence of obesity in developed and developing countries. Public health campaigns to promote healthier eating often target compliance with recommended dietary guidelines for consumption of individual nutrients such as fats and added sugars. This paper examines the association between improved compliance with dietary guidelines for individual nutrients and excess calorie intake, the most proximate determinant of obesity risk. We apply quantile regressions and counterfactual decompositions to cross-sectional data from the National Diet and Nutrition Survey (2000-01) to assess how excess calorie consumption patterns in the UK are likely to change with improved compliance with dietary guidelines. We find that the effects of compliance vary significantly across different quantiles of calorie consumption. Our results show that compliance with dietary guidelines for individual nutrients, even if successfully achieved, is likely to be associated with only modest shifts in excess calorie consumption patterns. Consequently, public health campaigns that target compliance with dietary guidelines for specific nutrients in isolation are unlikely to have a significant effect on the obesity risk faced by the population.
Resumo:
The metabolic syndrome may have its origins in thriftiness, insulin resistance and one of the most ancient of all signalling systems, redox. Thriftiness results from an evolutionarily-driven propensity to minimise energy expenditure. This has to be balanced with the need to resist the oxidative stress from cellular signalling and pathogen resistance, giving rise to something we call 'redox-thriftiness'. This is based on the notion that mitochondria may be able to both amplify membrane-derived redox growth signals as well as negatively regulate them, resulting in an increased ATP/ROS ratio. We suggest that 'redox-thriftiness' leads to insulin resistance, which has the effect of both protecting the individual cell from excessive growth/inflammatory stress, while ensuring energy is channelled to the brain, the immune system, and for storage. We also suggest that fine tuning of redox-thriftiness is achieved by hormetic (mild stress) signals that stimulate mitochondrial biogenesis and resistance to oxidative stress, which improves metabolic flexibility. However, in a non-hormetic environment with excessive calories, the protective nature of this system may lead to escalating insulin resistance and rising oxidative stress due to metabolic inflexibility and mitochondrial overload. Thus, the mitochondrially-associated resistance to oxidative stress (and metabolic flexibility) may determine insulin resistance. Genetically and environmentally determined mitochondrial function may define a 'tipping point' where protective insulin resistance tips over to inflammatory insulin resistance. Many hormetic factors may induce mild mitochondrial stress and biogenesis, including exercise, fasting, temperature extremes, unsaturated fats, polyphenols, alcohol, and even metformin and statins. Without hormesis, a proposed redox-thriftiness tipping point might lead to a feed forward insulin resistance cycle in the presence of excess calories. We therefore suggest that as oxidative stress determines functional longevity, a rather more descriptive term for the metabolic syndrome is the 'lifestyle-induced metabolic inflexibility and accelerated ageing syndrome'. Ultimately, thriftiness is good for us as long as we have hormetic stimuli; unfortunately, mankind is attempting to remove all hormetic (stressful) stimuli from his environment.
Resumo:
The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.
Resumo:
The recommendation to reduce saturated fatty acid (SFA) consumption to ≤10% of total energy (%TE) is a key public health target aimed at lowering cardiovascular disease (CVD) risk. Replacement of SFA with unsaturated fats may provide greater benefit than replacement with carbohydrates, yet the optimal type of fat is unclear. The aim was to develop a flexible food-exchange model to investigate the effects of substituting SFAs with monounsaturated fatty acids (MUFAs) or n-6 (ω-6) polyunsaturated fatty acids (PUFAs) on CVD risk factors. In this parallel study, UK adults aged 21-60 y with moderate CVD risk (50% greater than the population mean) were identified using a risk assessment tool (n = 195; 56% females). Three 16-wk isoenergetic diets of specific fatty acid (FA) composition (%TE SFA:%TE MUFA:%TE n-6 PUFA) were designed using spreads, oils, dairy products, and snacks as follows: 1) SFA-rich diet (17:11:4; n = 65); 2) MUFA-rich diet (9:19:4; n = 64); and 3) n-6 PUFA-rich diet (9:13:10; n = 66). Each diet provided 36%TE total fat. Dietary targets were broadly met for all intervention groups, reaching 17.6 ± 0.4%TE SFA, 18.5 ± 0.3%TE MUFA, and 10.4 ± 0.3%TE n-6 PUFA in the respective diets, with significant overall diet effects for the changes in SFA, MUFA, and n-6 PUFA between groups (P < 0.001). There were no differences in the changes of total fat, protein, carbohydrate, and alcohol intake or anthropometric measures between groups. Plasma phospholipid FA composition showed changes from baseline in the proportions of total SFA, MUFA, and n-6 PUFA for each diet group, with significant overall diet effects for total SFA and MUFA between groups (P < 0.001). In conclusion, successful implementation of the food-exchange model broadly achieved the dietary target intakes for the exchange of SFA with MUFA or n-6 PUFA with minimal disruption to the overall diet in a free-living population. This trial was registered at clinicaltrials.gov as NCT01478958.
Resumo:
Milk provides many key nutrients but the saturated and trans fatty acids in milk fat are associated with perceived negative effects on human health, especially cardiovascular disease. Recent epidemiological studies and dietary intervention trials challenge this perception, however; available evidence does not support the concept that consumption of saturated fats or dairy products adversely affects the risk of coronary heart disease (although replacing some saturated fats with mono or polyunsaturated fats is likely to provide benefit). Furthermore, the trans fats found in dairy products are consumed in very low amounts and do not appear to have the negative health effects associated with the consumption of industrial sources of trans fat. Milk fat is an excellent source of oleic acid that originates mainly by endogenous synthesis from stearic acid, but increasing the milk fat content of unsaturated fatty acids requires dietary formulations that bypass rumen biohydrogenation. Recent research indicates that long-chain omega-3 fatty acids and conjugated linoleic acids have potential beneficial effects in health maintenance and the prevention of chronic diseases. Enhancing the milk fat content of these fatty acids offers exciting possibilities, but educating consumers about inaccurate and inappropriate generalisations about fat remains the primary challenge. Finally, individuals do not simply consume milk-fat-derived fatty acids on their own, but rather as components in dairy foods which are highly complex and may contain many beneficial ingredients. Overall, dairy products are critical in providing many of the essential nutrients in the human diet. Nevertheless, dairy products vary in their nutrient composition, including fat, and this needs to be considered in the context of dietary recommendations and our need to consume a balanced diet.
Resumo:
Colorectal cancer is the third most prevalent cancer worldwide and the most common diet-related cancer, influenced by diets rich in red meat, low in plant foods and high in saturated fats. Observational studies have shown that fruit and vegetable intake may reduce colorectal cancer risks, although the precise bioactive components remain unclear. This review will outline the evidence for the role of polyphenols, glucosinolates and fibres against cancer progression in the gastrointestinal tract. Those bioactive compounds are considered protective agents against colon cancer, with evidence taken from epidemiological, human clinical, animal and in vitro studies. Various mechanisms of action have been postulated, such as the potential of polyphenols and glucosinolates to inhibit cancer cell growth and the actions of insoluble fibres as prebiotics and the evidence for these actions are detailed within. In addition, recent evidence suggests that polyphenols also have the potential to shift the gut ecology in a beneficial manner. Such actions of both fibre and polyphenols in the gastrointestinal tract and through interaction with gut epithelial cells may act in an additive manner to help explain why certain fruits and vegetables, but not all, act to differing extents to inhibit cancer incidence and progression. Indeed, a focus on the individual actions of such fruit and vegetable components, in particular polyphenols, glucosinolates and fibres is necessary to help explain which components are active in reducing gastrointestinal cancer risk.
Resumo:
Objective. To evaluate the perception of eating practices and the stages of change among adolescents. Methods. Cross-sectional study involving a representative sample of 390 adolescents from 11 public schools in the city of Piracicaba, Brazil, in 2004. Food consumption was identified by a food frequency questionnaire and the perception of eating practices evaluation was conducted by comparing food consumption and individual classification of healthy aspects of the diet. The participants were classified within stages of change by means of a specific algorithm. A reclassification within new stages of change was proposed to identify adolescents with similar characteristics regarding food consumption and perception. Results. Low consumption of fruit and vegetables and high consumption of sweets and fats were identified. More than 44% of the adolescents had a mistaken perception of their diet. A significant relationship between the stages of change and food consumption was observed. The reclassification among stages of change, through including the pseudo-maintenance and non-reflective action stages was necessary, considering the high proportion of adolescents who erroneously classified their diets as healthy. Conclusion. Classification of the adolescents into stages of change, together with consumption and perception data, enabled identification of groups at risk, in accordance with their inadequate dietary habits and non-recognition of such habits. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This study aimed at evaluating the effect of increasing organic loading rates and of enzyme pretreatment on the stability and efficiency of a hybrid upflow anaerobic sludge blanket reactor (UASBh) treating dairy effluent. The UASBh was submitted to the following average organic loading rates (OLR) 0.98 Kg.m(-3).d(-1), 4.58 Kg.m(-3).d(-1), 8.89 Kg.m(-3).d(-1) and 15.73 Kg.m(-3).d(-1), and with the higher value, the reactor was fed with effluent with and without an enzymatic pretreatment to hydrolyze fats. The hydraulic detention time was 24 h, and the temperature was 30 +/- 2 degrees C. The reactor was equipped with a superior foam bed and showed good efficiency and stability until an OLR of 8.89 Kg.m(-3).d(-1). The foam bed was efficient for solid retention and residual volatile acid concentration consumption. The enzymatic pretreatment did not contribute to the process stability, propitiating loss in both biomass and system efficiency. Specific methanogenic activity tests indicated the presence of inhibition after the sludge had been submitted to the pretreated effluent It was concluded that continuous exposure to the hydrolysis products or to the enzyme caused a dramatic drop in the efficiency and stability of the process, and the single exposure of the biomass to this condition did not inhibit methane formation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In animal models of diet-induced obesity, the activation of an inflammatory response in the hypothalamus produces molecular and functional resistance to the anorexigenic hormones insulin and leptin. The primary events triggered by dietary fats that ultimately lead to hypothalamic cytokine expression and inflammatory signaling are unknown. Here, we test the hypothesis that dietary fats act through the activation of toll-like receptors 2/4 and endoplasmic reticulum stress to induce cytokine expression in the hypothalamus of rodents. According to our results, long-chain saturated fatty acids activate predominantly toll-like receptor 4 signaling, which determines not only the induction of local cytokine expression but also promotes endoplasmic reticulum stress. Rats fed on a monounsaturated fat-rich diet do not develop hypothalamic leptin resistance, whereas toll-like receptor 4 loss-of-function mutation and immunopharmacological inhibition of toll-like receptor 4 protects mice from diet-induced obesity. Thus, toll-like receptor 4 acts as a predominant molecular target for saturated fatty acids in the hypothalamus, triggering the intracellular signaling network that induces an inflammatory response, and determines the resistance to anorexigenic signals.
Resumo:
BACKGROUND: Increased circulating cathepsin S levels have been linked to increased risk of cardiometabolic diseases and cancer. However, whether cathepsin S is a modifiable risk factor is unclear. We aimed to investigate the effects of a prudent diet on plasma cathepsin S levels in healthy individuals. FINDINGS: Explorative analyses of a randomized study were performed in 88 normal to slightly overweight and hyperlipidemic men and women (aged 25 to 65) that were randomly assigned to ad libitum prudent diet, i.e. healthy Nordic diet (ND) or a control group (habitual Western diet) for 6 weeks. Whereas all foods in the ND were provided, the control group was advised to consume their habitual diet throughout the study. The ND was in line with dietary recommendations, e.g. low in saturated fats, sugars and salt, but high in plant-based foods rich in fibre and unsaturated fats.The ND significantly decreased cathepsin S levels (from 20.1 (+/-4.0 SD) to 19.7 μg/L (+/-4.3 SD)) compared with control group (from 18.2 (+/-2.9 SD) to 19.1 μg/L (+/-3.8 SD)). This difference remained after adjusting for sex and change in insulin sensitivity (P = 0.03), and near significant after adjusting for baseline cathepsin S levels (P = 0.06), but not for change in weight or LDL-C. Changes in cathepsin S levels were directly correlated with change in LDL-C. CONCLUSIONS: Compared with a habitual control diet, a provided ad libitum healthy Nordic diet decreased cathepsin S levels in healthy individuals, possibly mediated by weight loss or lowered LDL-C. These differences between groups in cathepsin S were however not robust and therefore need further investigation.
Resumo:
The tendency towards reduction of serum retinol levels, an existing placental barrier and the increase of retinol demand, are factors that place puerperal and lactating women at risk for Vitamin A deficiency. This micronutrient is an essential component of vital processes such as differentiation, cellular proliferation, and apoptosis. The objective of this study is to evaluate the effect of palmitate retinol supplementation (100.000UI) upon the milk retinollevels in puerperal women at the Januário Cicco University Maternity Hospital. This intervention has been adopted by the Ministry of Health since 2002. The longitudinal experiment was conducted with 106 puerperal women (68 comprised the supplemented group and 38 the control group). The High Performance Liquid Chromatography (HPLC) method was used to dose the retinol of the milk and serum samples, and the creamtocrit method to determine the milk fat levels. The retinol means for the colostrums were 99.0 ± 64.4 ug/dL and 160.1 ± 94,4 ug/dl 6 hours afier supplementation; 68.9 ± 33.5 ug/dL for the transitional milk, and 30.6 ± 15.2 ug/dL for the mature milk of the supplemented group. Ali the difterences between means were statistically significant. The difterence between retinol means in the control group were also significant, with these being greater in the colostrum, 88.6 ± 62.1 ug/dL with 61.9 ± 30.1 ug/dl in the transition milk and 32.9 ±32.9 ± 17.6 ug/dL in the mature milk. No significant difference was observed in the retinol means of the three types ot milk in the supplemented group when compared to their respective means in the control group. The prevalence in serum (35.1 % and 81.1 % for the cutting point 20 ug/dL, respectively) and in milk (51.4%) revealed vitamin A deficiency as a public health problem. COlostrum, transition, and mature milk tats varied similarly in the supplemented group (1,92 ± 0,96; 3,25 ± 1,27 and 3,31 ± 1,36 grams) and in the control group (1,87 ± 1,14; 3,25 ± 1,31 and 3,36 ± 1,67 grams), with an observed difference between the colostrum/transition milk and the colostrum/mature milk fats. No difference was observed between the groups. The study showed that the 200.000UI supplementation was not sufficient to increase the milk retinol to the desired levels nor to meet the demands of the mothers with deprived hepatic reserves. It is suggested that another similar dose be offered within 30 days or less, and within 2 months post-partum, while continual/y monitoring for possible pregnancy
Resumo:
Biodiesel is a fuel obtained from vegetable oils, such as soy, castorbean, among others. The monoester of fatty acid of these oils have chains with mono, di and tri double connections. The presence of these insaturations are susceptible to oxidization. Antioxidants are substances able to prevent oxidization from oils, fats, fat foods, as well as esters of Alquila( biodiesel). The objective of this work is to summarize a new antioxidant from the Cashew Nut Shell Liquid (CNSL) using the electrolysis technique. A current of 2 amperes was used in a single cell of only one group and two eletrodos of stainless steel 304 in a solution of methanol, together with the eletrolits: acetic acid, sodium chloride and sodium hydroxide, for two hours of agitation. The electrolysis products are characterized by the techniques of cromatography in a thin layer, spectroscopy of infrared and gravimetric analysis. The material was submitted to tests of oxidative stability made by the techniques of spectropy of impendancy and Rancimat (EN 14112). The analyses of characterization suggest that the polimerization of the electrolytic material ocurred. The application results of these materials as antioxidants of soy biodiesel showed that the order of the oxidative stability was obtained by both techniques used
Resumo:
Freshwater fish are an important source of protein, but they also contain other highly nutritive components such as fats. Polyunsaturated fatty acids (PUFAs) are essential for normal growth, development and reproduction of vertebrates. The antioxidant role of vitamin E in cell membranes prevents fatty acid and cholesterol oxidation, thereby promoting PUFA and subcellular particle stabilization. The effects of vitamin E supplementation on the quality of Nile tilapia (Oreochromis niloticus) carcass were investigated. The experiments were carried out in an experimental laboratory over 106 d. After sex reversal, 400 early juvenile O. niloticus were tested in a completely randomized experiment with 5 treatments (4 repetitions each), consisting of vitamin E monophosphate supplementation at 0, 50, 100, 150 or 200 mg/kg of a base diet. Treatment diets contained equal amounts of protein and energy. Tilapias supplemented with vitamin E contained arachidonic acid (20:4 omega-6; AA) which participates in inflammatory response. Nile tilapia carcasses that received vitamin E at 100 and 150 mg/kg diet had improved carcass quality by increasing the PUFA:SFA ratio and had the highest levels of polyunsaturated fatty acids from the omega-3 (linolenic acid; 18:3 omega-3) and omega-6 (linoleic acid; 18:2 omega-6) series. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The study had as objective to evaluate the zinc status by means of dietary intake, zinc in plasma and in erythrocytes and the metallothionein gene expression in patients with atherosclerosis in use of rosuvastatin. The research involved 27 adult and elderly patients of both genders with atherosclerosis that were treated with rosuvastatin (10mg/day) during 4 months. We performed the dosage of lipids, glucose, AST and ALT, ultrasensitive C-reactive protein (hsCRP), plasmatic and erythrocyte zinc and 1 and 2 metallothionein gene expression. The assessment of body mass index (BMI) and abdominal circumference (AC) was performed, besides the analysis of dietary intake of patients. The majority of the evaluated patients presented overweight, before and after the treatment, with no significant difference between the times of the study. It was identified that the AC was significantly reduced in the group (p<0.05) after the intervention. The majority of the patients had intake below the recommendation of calories and fibers and above recommendation of proteins. The mono and polyunsaturated fats were adequate for the majority of the patients, however, the saturated fat and cholesterol were consumed in excess by a great part of the individuals. The intake of zinc was inadequate, being noticed an inadequacy of 100% in the male gender and of 84% in the female. After the treatment with rosuvastatin there was a significant reduction in the total cholesterol (TC) and LDL-c (p<0.01) and no alterations were observed in the HDL-c and triacylglycerols. It was also verified that the reduction of glycemia (p<0.05) and of hsCRP (p<0.01). The analysis did not demonstrate significant differences in the plasmatic and erythrocyte zinc concentration after the treatment. There was, after the treatment, reduction of the MT1F gene (p<0.05) without, however, occurring significant alterations in the MT2A gene. The treatment with rosuvastatin was effective in the reduction of TC and LDL-c, and promoted the reduction of inflammatory marker hsCRP. The zinc in the plasma and erythrocyte was not altered by the use of the medication and there was a reduction in the MT1F gene, possibly due to the reduction of inflammation. The majority of patients presented inadequate intake of zinc and this inadequacy did not have relation with the mineral parameters in plasma and erythrocytes or with the metallothionein gene expression