989 resultados para Failure (mechanical)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A robust finite element scheme for the micro-mechanical modeling of the behavior of fiber reinforced polymeric composites under external loads is developed. The developed model is used to simulate stress distribution throughout the composite domain and to identify the locations where maximum stress concentrations occur. This information is used as a guide to predict dominant failure and crack growth mechanisms in fiber reinforced composites. The differences between continuous fibers, which are susceptible to unidirectional transverse fracture, and short fibers have been demonstrated. To assess the validity and range of applicability of the developed scheme, numerical results obtained by the model are compared with the available experimental data and also with the values found using other methods reported in the literature. These comparisons show that the present finite element scheme can generate meaningful results in the analysis of fiber reinforced composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Fe-8.46%Mn-0.24%Nb-0.038%C (wt.%) manganese steel was investigated. The steel has a 100% bcc structure after heat treatment at 850°C for 1.5 h, water quenching or air cooling. Martensite interlocked microstructure consisting of fine martensite plates/needles with different spatial orientations was found. Austenite forms, in small amounts, after a 600°C reheating treatment. Scanning electron microscopy images and energy dispersive spectrometry of the fracture surfaces revealed both ductile and brittle types of failure and precipitates. Deep quenching after the heat treatments does not change the phase composition or the hardness. NbC is formed in the steel, in high number densities. It plays a role in the impact fracture process, by acting as void nucleation sites, facilitating ductile fracture with dimples appearing on the fracture surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is now possible to print engineering structures. This paper presents a study of the mechanical behavior of 3D printed structures using cementitious powder. Microscopic observation reveals that the 3D printed products have a layered orthotropic microstructure, in which each layer consists of parallel strips. Compression and flexural tests were conducted to determine the mechanical properties and failure characteristics of such materials. The test results confirmed that the 3D printed structures are laminated with apparent orthotropy. Based on the experimental results, a stress-strain relationship and a failure criterion based on the maximum stress criterion for orthotropic materials are proposed for the structures of 3D printed material. Finally, a finite element analysis was conducted for a 3D printed shell structure, which shows that the printing direction has a significant influence on the load bearing capacity of the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background
Mechanical ventilation is a life-saving intervention for critically ill newborn infants with respiratory failure admitted to a neonatal intensive care unit (NICU). Ventilating newborn infants can be challenging due to small tidal volumes, high breathing frequencies, and the use of uncuffed endotracheal tubes. Mechanical ventilation has several short-term, as well as long-term complications. To prevent complications, weaning from the ventilator is started as soon as possible. Weaning aims to support the transfer from full mechanical ventilation support to spontaneous breathing activity.

Objectives
To assess the efficacy of protocolized versus non-protocolized ventilator weaning for newborn infants in reducing the duration of invasive mechanical ventilation, the duration of weaning, and shortening the NICU and hospital length of stay. To determine efficacy in predefined subgroups including: gestational age and birth weight; type of protocol; and type of protocol delivery. To establish whether protocolized weaning is safe and clinically effective in reducing the duration of mechanical ventilation without increasing the risk of adverse events.

Search methods
We searched the Cochrane Central Register of Controlled trials (CENTRAL; the Cochrane Library; 2015, Issue 7); MEDLINE In-Process and other Non-Indexed Citations and OVID MEDLINE (1950 to 31 July 2015); CINAHL (1982 to 31 July 2015); EMBASE (1988 to 31 July 2015); and Web of Science (1990 to 15 July 2015). We did not restrict language of publication. We contacted authors of studies with a subgroup of newborn infants in their study, and experts in the field regarding this subject. In addition, we searched abstracts from conference proceedings, theses, dissertations, and reference lists of all identified studies for further relevant studies.

Selection criteria
Randomized, quasi-randomized or cluster-randomized controlled trials that compared protocolized with non-protocolized ventilator weaning practices in newborn infants with a gestational age of 24 weeks or more, who were enrolled in the study before the postnatal age of 28 completed days after the expected date of birth.

Data collection and analysis
Four authors, in pairs, independently reviewed titles and abstracts identified by electronic searches. We retrieved full-text versions of potentially relevant studies.

Main results
Our search yielded 1752 records. We removed duplicates (1062) and irrelevant studies (843). We did not find any randomized, quasi-randomized or cluster-randomized controlled trials conducted on weaning from mechanical ventilation in newborn infants. Two randomized controlled trials met the inclusion criteria on type of study and type of intervention, but only included a proportion of newborns. The study authors could not provide data needed for subgroup analysis; we excluded both studies.

Authors' conclusions
Based on the results of this review, there is no evidence to support or refute the superiority or inferiority of weaning by protocol over non-protocol weaning on duration of invasive mechanical ventilation in newborn infants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Master Thesis in Mechanical Engineering field of Maintenance and Production

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terminal heart failure can be the cause or the result of major dysfunctions of the organisms. Although, the outcome of the natural history is the same in both situations, it is of prime importance to differentiate the two, as only heart failure as the primary cause allows for successful mechanical circulatory support as bridge to transplantation or towards recovery. Various objective parameters allow for the establishment of the diagnosis of terminal heart failure despite optimal medical treatment. A cardiac index <2.0 l/min, and a mixed venous oxygen saturation <60%, in combination with progressive renal failure, should trigger a diagnostic work-up in order to identify cardiac defects that can be corrected or to list the patient for transplantation with/without mechanical circulatory support.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with chronic heart failure who are not eligible for heart transplant and whose life expectancy depends mainly on the heart disease may benefit from mechanical circulatory support. Mechanical circulatory support restores adequate cardiac output and organ perfusion and eventually improves patients' clinical condition, quality of life and life expectancy. This treatment is called destination therapy (DT) and we estimate that in Switzerland more than 120 patients per year could benefit from it. In the last 10 years, design of the devices, implantation techniques and prognoses have changed dramatically. The key to successful therapy with a left ventricular assist device is appropriate patient selection, although we are still working on the definition of reliable inclusion and exclusion criteria and optimal timing for surgical implantation. Devices providing best long-term results are continuous flow, rotary or axial blood pumps implanted using minimally invasive techniques on a beating heart. These new devices (Thoratec HeartMate II and HeartWare HVAD) have only a single moving part, and have improved durability with virtually 10 years freedom from mechanical failure. In selected patients, the overall actuarial survival of DT patients is 75% at 1 year and 62% at 2 years, with a clear improvement in quality of life compared with medical management only. Complications include bleeding and infections; their overall incidence is significantly lower than with previous devices and their management is well defined. DT is evolving into an effective and reasonably cost-effective treatment option for a growing population of patients not eligible for heart transplant, showing encouraging survival rates at 2 years and providing clear improvement in quality of life. The future is bright for people suffering from chronic heart failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polydimethylsiloxane (PDMS) is the elastomer of choice to create a variety of microfluidic devices by soft lithography techniques (eg., [1], [2], [3], [4]). Accurate and reliable design, manufacture, and operation of microfluidic devices made from PDMS, require a detailed characterization of the deformation and failure behavior of the material. This paper discusses progress in a recently-initiated research project towards this goal. We have conducted large-deformation tension and compression experiments on traditional macroscale specimens, as well as microscale tension experiments on thin-film (≈ 50µm thickness) specimens of PDMS with varying ratios of monomer:curing agent (5:1, 10:1, 20:1). We find that the stress-stretch response of these materials shows significant variability, even for nominally identically prepared specimens. A non-linear, large-deformation rubber-elasticity model [5], [6] is applied to represent the behavior of PDMS. The constitutive model has been implemented in a finite-element program [7] to aid the design of microfluidic devices made from this material. As a first attempt towards the goal of estimating the non-linear material parameters for PDMS from indentation experiments, we have conducted micro-indentation experiments using a spherical indenter-tip, and carried out corresponding numerical simulations to verify how well the numerically-predicted P(load-h(depth of indentation) curves compare with the corresponding experimental measurements. The results are encouraging, and show the possibility of estimating the material parameters for PDMS from relatively simple micro-indentation experiments, and corresponding numerical simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – To evaluate the control strategy for a hybrid natural ventilation wind catchers and air-conditioning system and to assess the contribution of wind catchers to indoor air environments and energy savings if any. Design/methodology/approach – Most of the modeling techniques for assessing wind catchers performance are theoretical. Post-occupancy evaluation studies of buildings will provide an insight into the operation of these building components and help to inform facilities managers. A case study for POE was presented in this paper. Findings – The monitoring of the summer and winter month operations showed that the indoor air quality parameters were kept within the design target range. The design control strategy failed to record data regarding the operation, opening time and position of wind catchers system. Though the implemented control strategy was working effectively in monitoring the operation of mechanical ventilation systems, i.e. AHU, did not integrate the wind catchers with the mechanical ventilation system. Research limitations/implications – Owing to short-falls in the control strategy implemented in this project, it was found difficult to quantify and verify the contribution of the wind catchers to the internal conditions and, hence, energy savings. Practical implications – Controlling the operation of the wind catchers via the AHU will lead to isolation of the wind catchers in the event of malfunctioning of the AHU. Wind catchers will contribute to the ventilation of space, particularly in the summer months. Originality/value – This paper demonstrates the value of POE as indispensable tool for FM professionals. It further provides insight into the application of natural ventilation systems in building for healthier indoor environments at lower energy cost. The design of the control strategy for natural ventilation and air-conditioning should be considered at the design stage involving the FM personnel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impaired mechanosensing leads to heart failure and we have previously shown that a decreased ratio of cytoplasmic to nuclear CSRP3/Muscle LIM protein (MLP ratio) is associated with a loss of mechanosensitivity. Here we tested whether passive or active stress/strain was important in modulating the MLP ratio and determined whether this correlated with heart function during the transition to failure. We exposed cultured neonatal rat myocytes to 10% cyclic mechanical stretch at 1 Hz, or electrically paced myocytes at 6.8 V (1 Hz) for 48 h. The MLP ratio decreased 50% (P < 0.05, n = 4) only in response to electrical pacing, suggesting impaired mechanosensitivity. Inhibition of contractility with 10 μM blebbistatin resulted in a ∼3 fold increase in the MLP ratio (n = 8, P < 0.05), indicating that myocyte contractility regulates nuclear MLP. Inhibition of histone deacetylase (HDAC) signaling with trichostatin A increased nuclear MLP following passive stretch, suggesting that HDACs block MLP nuclear accumulation. Inhibition of heme-oxygenase1 (HO-1) activity with PPZII blocked MLP nuclear accumulation. To examine how mechanosensitivity changes during the transition to heart failure, we studied a guinea pig model of angiotensin II infusion (400 ng/kg/min) over 12 weeks. Using subcellular fractionation we showed that the MLP ratio increased 88% (n = 4, P < 0.01) during compensated hypertrophy, but decreased significantly during heart failure (P < 0.001, n = 4). The MLP ratio correlated significantly with the E/A ratio (r = 0.71, P < 0.01 n = 12), a clinical measure of diastolic function. These data indicate for the first time that myocyte mechanosensitivity as indicated by the MLP ratio is regulated primarily by myocyte contractility via HO-1 and HDAC signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background : Tracheostomy is a well established and practical approach to airway management for patients requiring extended periods of mechanical ventilation or airway protection. Little evidence is available to guide the process of weaning and optimal timing of tracheostomy tube removal. Thus, decannulation decisions are based on clinical judgement. The aim of this study was to describe decannulation practice and failure rates in patients with tracheostomy following critical illness.

Methods : A prospective descriptive study was conducted of consecutive patients who received a tracheostomy at a tertiary metropolitan public hospital intensive care unit (ICU) between March 2002 and December 2006. Data were analysed using descriptive and inferential tests.

Results : Of the 823 decannulation decisions, there were 40 episodes of failed decannulation, a failure rate of 4.8%. These 40 episodes occurred in 35 patients: 31 patients failed once, 3 patients failed twice and 1 patient failed three times. There was no associated mortality. Simple stoma recannulation was required in 25 episodes, with none of these patients readmitted to ICU. Translaryngeal intubation and readmission to ICU took place for the remaining 15 episodes. The primary reason for decannulation failure was sputum retention. Twenty-four patients (60%) failed decannulation within 24 h, with 14 of these occurring within 4 h.

Conclusions : Clinical assessments coupled with professional judgement to decide the optimal time to remove tracheostomy tubes in patients following critical illness resulted in a failure rate comparable with published data. Although reintubation and readmission to ICU was required in just over one third of failed decannulation episodes, there was no associated mortality or other significant adverse events. Our data suggest nurses need to exercise high levels of clinical vigilance during the first 24 h following decannulation, particularly the first 4 h to detect early signs of respiratory compromise to avoid adverse outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction
Angiotensin II (Ang II) is known to induce cardiac growth and modulate myocardial contractility. It has been reported that elevated levels of endogenous Ang II contribute to the development of cardiac hypertrophy in hypertensives. However, the long-term functional effects of cardiac exposure to Ang II in normotensives is unclear.

A recently developed transgenic mouse (TG1306/1R), in which cardiac-specific overproduction of Ang II produces primary hypertrophy, provides a new experimental model for investigation of this phenotype. The aim of the present study was to use this model to investigate whether there is a functional deficit in primary hypertrophy that may predispose to cardiac failure and sudden death. We hypothesised that primary cardiac hypertrophy is associated with mechanical dysfunction in the basal state.

Methods
Normotensive heterozygous TG1306/1R mice harbouring multiple copies of a cardiac-specific rat angiotensinogen gene were studied at age 30—40 weeks and compared with age-matched wild-type littermates. Left ventricular function was measured ex vivo in bicarbonate buffer-perfused, Langendorffmounted hearts ( at a perfusion pressure of 80 mmHg, 37°C) using a fluid-filled PVC balloon interfaced to a pressure transducer and digital data acquisition system.

Results
There was no difference in the mean (±SEM) intrinsic heart rate of TG1306/1R and wild-type control mice (357.4±11.8 vs. 367.5±20.9 bpm, n=9 & 7). Under standardised end-diastolic pressure conditions, TG1306/1R hearts exhibited a significant reduction in peak developed pressure (132.2±9.4 vs. 161.5±3.1 mmHg, n=9 & 7, p<0.05) and maximum rate of pressure development (3566.7±323.7 vs. 4486.3±109.4 mmHg, n=9 & 7, p<0.05). TG1306/1R mice show a significant correlation between incidence of arrhythmia and increasing heart size (Spearman's correlation coefficient 0.61).

Conclusion
These data demonstrate that chronic in vivo exposure to elevated levels of intra-cardiac Ang II is associated with significant contractile abnormalities evident in the ex vivo intact heart. Our findings suggest that endogenous overproduction of cardiac Ang II, independent of changes in blood pressure, is sufficient to induce ventricular remodelling that culminates in impaired cardiac function which may precede failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical behaviours of metal foams greatly depend on their cell topology, including cell shape, cell size etc. as well as relative density and material properties of the cell wall. However, the cell shape effect on the mechanical behaviours of such materials appears to be ignored in previous research. In this paper, both analytic and finite element models are developed and employed to investigate the effect of cell shape on the mechanical behaviour of open-cell magnesium alloy (AZ91) foams under compression, including deformation modes and failure modes. For numerical modelling, both two-dimensional (2-D) and three-dimensional (3-D) finite element models are developed to predict the compressive behaviours of typical open-cell metal foams and capture the deformation modes and failure mechanisms. Two typical cell shapes i.e. cubic and diamond are taken into consideration. To validate these models, the analytic and numerical results are compared to the experimental data. Both the numerical and experimental data indicate that the cell shape significantly affects the compression behaviour of open-cell metal foams. In general, numerical results from the three-dimensional solid-element model show better agreement with the experimental results than those from other finite element models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the application of computer aided design (CAD) in teaching advanced design methodologies to fourth-year undergraduate students majoring in mechanical engineering. This involves modern enhancements in teaching strategies for subjects such as design-for-X (DFx) and failure mode effect analysis (FMEA) concepts, which are traditionally categorised as advanced design methodologies. The main subsets of DFx including design-for-assembly (DFA), design-for-disassembly (DFD), design-for-manufacturing (DFM), design-for-environment (DFE) and design-for-recyclability (DFR) were covered by studying various engineering and consumer products. The unit was designed as a combination of practical hands-on workshop-based classes along with a software-based evaluation of different products. In addition to CAD, finite element modelling techniques were utilised to enhance the students’ understanding of design faults and failures. The inquiry into teaching practice and design of this fourth-year unit was carried out during past two years and it revealed some interesting outcomes from our teaching practice in terms of students’ learning experiences. Finally, the paper discusses some critical factors in the context of teaching advanced design methodologies to the undergraduates in mechanical engineering and even manufacturing engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microcompression tests were performed to determine the mechanical behavior of nano-crystalline Cu/Fe and Fe/Cu multilayers, as well as monolithic Cu and Fe thin films. The results show that the micropillars of pure Cu thin film bulge out under large compressive strains without failure, while those of pure Fe thin film crack near the top at low compressive strains followed by shear failure. For Cu/Fe and Fe/Cu multilayers, the Cu layers accommodate the majority of plastic deformation, and the geometry constraints imposed by Fe layers exaggerates the bulging in the Cu layers. However, the existence of ductile Cu layers does not improve the overall ductility of Cu/Fe and Fe/Cu multilayers. Cracking in the Fe layers directly lead to the failure of the multilayer micropillars, although the Cu layers have very good ductility. The results imply that suppressing the cracking of brittle layers is more important than simply adding ductile layers for improving the overall ductility of metallic multilayers.