520 resultados para Fader, Lester
Resumo:
While the Cluster spacecraft were located near the high-latitude magnetopause, between 10:10 and 10:40 UT on 16 January 2004, three typical flux transfer event (FTE) signatures were observed. During this interval, simultaneous and conjugated all-sky camera measurements, recorded at Yellow River Station, Svalbard, are available at 630.0 and 557.7nm that show poleward-moving auroral forms (PMAFs), consistent with magnetic reconnection at dayside magnetopause. Simultaneous FTEs seen at the magnetopause mainly move northward, but having duskward (eastward) and tailward velocity components, roughly consistent with the observed direction of motion of the PMAFs in all-sky images. Between the PMAFs meridional keograms, extracted from the all-sky images, show intervals of lower intensity aurora which migrate equatorward just before the PMAFs intensify. This is strong evidence for an equatorward eroding and poleward moving open-closed boundary (OCB) associated with a variable magnetopause reconnection rate under variable IMF conditions. From the durations of the PMAFs we infer that the evolution time of FTEs is 5-11 minutes from its origin on magnetopause to its addition to the polar cap.
Resumo:
The eukaryotic genome is a mosaic of eubacterial and archaeal genes in addition to those unique to itself. The mosaic may have arisen as the result of two prokaryotes merging their genomes, or from genes acquired from an endosymbiont of eubacterial origin. A third possibility is that the eukaryotic genome arose from successive events of lateral gene transfer over long periods of time. This theory does not exclude the endosymbiont, but questions whether it is necessary to explain the peculiar set of eukaryotic genes. We use phylogenetic studies and reconstructions of ancestral first appearances of genes on the prokaryotic phylogeny to assess evidence for the lateral gene transfer scenario. We find that phylogenies advanced to support fusion can also arise from a succession of lateral gene transfer events. Our reconstructions of ancestral first appearances of genes reveal that the various genes that make up the eukaryotic mosaic arose at different times and in diverse lineages on the prokaryotic tree, and were not available in a single lineage. Successive events of lateral gene transfer can explain the unusual mosaic structure of the eukaryotic genome, with its content linked to the immediate adaptive value of the genes its acquired. Progress in understanding eukaryotes may come from identifying ancestral features such as the eukaryotic splicesome that could explain why this lineage invaded, or created, the eukaryoticniche.
Resumo:
While the Cluster spacecraft were located near the high-latitude magnetopause, between 1010 and 1040 UT on 16 January 2004, three typical flux transfer event (FTE) signatures were observed. During this interval, simultaneous and conjugated all‐sky camera measurements, recorded at Yellow River Station, Svalbard, are available at 630.0 and 557.7 nm that show poleward‐moving auroral forms (PMAFs), consistent with magnetic reconnection at the dayside magnetopause. Simultaneous FTEs seen at the magnetopause mainly move northward, but having duskward (eastward) and tailward velocity components, roughly consistent with the observed direction of motion of the PMAFs in all‐sky images. Between the PMAFs meridional keograms, extracted from the all‐sky images, show intervals of lower intensity aurora which migrate equatorward just before the PMAFs intensify. This is strong evidence for an equatorward eroding and poleward moving open‐closed boundary associated with a variable magnetopause reconnection rate under variable IMF conditions. From the durations of the PMAFs, we infer that the evolution time of FTEs is 5–11 minutes from its origin on the magnetopause to its addition to the polar cap.
Resumo:
A number of poleward moving events were observed between 1130 and 1300 UT on 11 February 2004, during periods of southward interplanetary magnetic field (IMF), while the steerable antenna of the European Incoherent Scatter (EISCAT) Svalbard radar (ESR)and the Tromsø VHF radar pointed nearly northward at low elevation. In this interval, simultaneous SuperDARN CUTLASS Finland radar measurements showed poleward moving radar aurora forms (PMRAFs) which appeared very similar to the density enhancements observed by the ESR northward pointing antenna. These events appeared quasiperiodically with a period of about 10 min. Comparing the observations from the above three radars, it is inferred that there is an almost one‐to‐one correspondence between the poleward moving plasma concentration enhancements (PMPCEs) observed by the ESR and the VHF radar and the PMRAFs measured by the CUTLASS Finland radar. These observations are consistent with the interpretation that the polar cap patch material was generated by photoionization at subauroral latitudes and that the plasma was structured by bursts of magnetopause reconnection giving access to the polar cap. There is clear evidence that plasma structuring into patches was dependent on the variability in IMF |By|. The duration of these events implies that the average evolution time of the newly opened flux tubes from the subauroral region to the polar cap was about 33 min.
Resumo:
Although pharmacogenetic research thrives,1 genetic determinants of response to purely psychotherapeutic treatments remain unexplored. In a sample of children undergoing cognitive behaviour therapy (CBT) for an anxiety disorder, we tested whether treatment response is associated with the serotonin transporter gene promoter region (5HTTLPR), previously shown to moderate environmental influences on depression.
Resumo:
Therapygenetics, the study of genetic determinants of response to psychological therapies, is in its infancy. Here, we investigate whether single-nucleotide polymorphisms in nerve growth factor (NGF) (rs6330) and brain-derived neutrotrophic factor (BDNF) (rs6265) genes predict the response to cognitive behaviour therapy (CBT). Neurotrophic genes represent plausible candidate genes: they are implicated in synaptic plasticity, response to stress, and are widely expressed in brain areas involved in mood and cognition. Allelic variation at both loci has shown associations with anxiety-related phenotypes. A sample of 374 anxiety-disordered children with white European ancestry was recruited from clinics in Reading, UK, and in Sydney, Australia. Participants received manualised CBT treatment and DNA was collected from buccal cells using cheek swabs. Treatment response was assessed at post-treatment and follow-up time points. We report first evidence that children with one or more copies of the T allele of NGF rs6330 were significantly more likely to be free of their primary anxiety diagnosis at follow-up (OR=0.60 (0.42–0.85), P=0.005). These effects remained even when other clinically relevant covariates were accounted for (OR=0.62 (0.41–0.92), P=0.019). No significant associations were observed between BDNF rs6265 and response to psychological therapy. These findings demonstrate that knowledge of genetic markers has the potential to inform clinical treatment decisions for psychotherapeutic interventions.
Resumo:
Background. Within a therapeutic gene by environment (GxE) framework, we recently demonstrated that variation in the Serotonin Transporter Promoter Polymorphism; 5HTTLPR and marker rs6330 in Nerve Growth Factor gene; NGF is associated with poorer outcomes following cognitive behaviour therapy (CBT) for child anxiety disorders. The aim of this study was to explore one potential means of extending the translational reach of G×E data in a way that may be clinically informative. We describe a ‘risk-index’ approach combining genetic, demographic and clinical data and test its ability to predict diagnostic outcome following CBT in anxious children. Method. DNA and clinical data were collected from 384 children with a primary anxiety disorder undergoing CBT. We tested our risk model in five cross-validation training sets. Results. In predicting treatment outcome, six variables had a minimum mean beta value of 0.5: 5HTTLPR, NGF rs6330, gender, primary anxiety severity, comorbid mood disorder and comorbid externalising disorder. A risk index (range 0-8) constructed from these variables had moderate predictive ability (AUC = .62-.69) in this study. Children scoring high on this index (5-8) were approximately three times as likely to retain their primary anxiety disorder at follow-up as compared to those children scoring 2 or less. Conclusion. Significant genetic, demographic and clinical predictors of outcome following CBT for anxiety-disordered children were identified. Combining these predictors within a risk-index could be used to identify which children are less likely to be diagnosis free following CBT alone or thus require longer or enhanced treatment. The ‘risk-index’ approach represents one means of harnessing the translational potential of G×E data.
Resumo:
The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth’s atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C.T.R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth’s atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth’s atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized.