971 resultados para Factor (fgf)-2
Resumo:
A decline in cognitive ability is a typical feature of the normal aging process, and of neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases. Although their etiologies differ, all of these disorders involve local activation of innate immune pathways and associated inflammatory cytokines. However, clinical trials of anti-inflammatory agents in neurodegenerative disorders have been disappointing, and it is therefore necessary to better understand the complex roles of the inflammatory process in neurological dysfunction. The dietary phytochemical curcumin can exert anti-inflammatory, antioxidant and neuroprotective actions. Here we provide evidence that curcumin ameliorates cognitive deficits associated with activation of the innate immune response by mechanisms requiring functional tumor necrosis factor α receptor 2 (TNFR2) signaling. In vivo, the ability of curcumin to counteract hippocampusdependent spatial memory deficits, to stimulate neuroprotective mechanisms such as upregulation of BDNF, to decrease glutaminase levels, and to modulate N-methyl- D –aspartate receptor levels was absent in mice lacking functional TNFRs. Curcumin treatment protected cultured neurons against glutamate-induced excitotoxicity by a mechanism requiring TNFR2 activation. Our results suggest the possibility that therapeutic approaches against cognitive decline designed to selectively enhance TNFR2 signaling are likely to be more beneficial than the use of anti-inflammatory drugs per se.
Resumo:
In Tumoren und Onkogen-transformierten Zellen finden sich häufig Defizienzen in der Expression von Komponenten der MHC Klasse I-Antigenprozessierung, die mit einer verminderten MHC Klasse I-Oberflächenexpression und einer reduzierten Sensitivität der Zellen gegenüber einer ZTL-vermittelten Lyse gekoppelt sein können. Da in den meisten Fällen die reduzierten Expressionsmuster über Zytokine revertiert werden können, werden verschiedene Regulationsmechanismen als Ursache für die Defizienzen postuliert. Auch in Zellen, die den „human epidermal growth factor receptor 2“ (HER-2/neu) überexprimieren, wurden derartige „Immune escape“-Mechanismen identifiziert. Aufgrund der Amplifikation und/oder Überexpression dieses Onkogens in Tumoren, die mit einer schnellen Progression der Erkrankung und einer schlechten Heilungsprognose assoziiert ist, wurden zahlreiche Therapien entwickelt, die auf einer Mobilisierung des Immunsystems gegenüber HER-2/neu oder dessen Blockade durch spezifische Antikörper abzielen. Die bisher jedoch nur unzureichenden Erfolge dieser Therapien könnten ihre Ursache in einer verminderten Immunogenität der HER-2/neu+-Zellen aufgrund von Defizienzen in der MHC Klasse I-Antigenprozessierung haben, weshalb die Untersuchung der molekularen Ursachen dieser Suppression für die Therapie von HER-2/neu+-Tumoren von besonderer Bedeutung ist. In dieser Arbeit wurde anhand eines in vitro-Systems ein HER-2/neu-vermittelter „Immune escape“-Phänotyp charakterisiert und die zugrunde liegenden molekularen Mechanismen untersucht. Hierzu wurden murine, HER-2/neu--NIH3T3-Zellen mit HER-2/neu-transfizierten NIH3T3-Zellen verglichen. Die Untersuchung zeigte, dass die Oberflächenexpression von MHC Klasse I-Antigenen bei einer HER-2/neu-Überexpression vermindert ist. Dies ist assoziiert mit reduzierten Expressionen von LMP2, LMP10, PA28a, PA28b, ERAAP, TAP1, TAP2, und Tapasin, einem blockiertem TAP-Transport und einer fehlenden Sensitivität gegenüber einer ZTL-vermittelten Lyse. Da die analysierten Defekte durch eine Stimulation mit IFN‑g wieder revertiert werden können, wird eine transkriptionelle oder translationelle Regulation der betroffenen Gene durch HER-2/neu postuliert. Aufgrund dieser Ergebnisse ist eine T-Zell-vermittelte Therapie von HER-2/neu+-Tumoren als kritisch anzusehen. Die Untersuchung der Promotoren von TAP1/LMP2, TAP2 und Tapasin ergab geringere und durch IFN‑g-induzierbare Promotoraktivitäten in den HER-2/neu+-Zellen im Vergleich zu den HER-2/neu—-Zellen. Mittels Mutagenese-PCR und Gelretardationsanalysen konnte die Bindung eines Komplexes an zwei E2F- und einer P300-Bindungsstelle im Tapasin-Promotor identifiziert werden, die für die HER-2/neu-vermittelte Hemmung der Tapasin-Promotoraktivität essentiell ist. Eine Inaktivierung der E2F- und P300-Motve in den TAP1/LMP2- und TAP2-Promotoren hatte dagegen keinen Einfluss auf die HER-2/neu-vermittelte Blockade der Promotoraktivität. Ein Vergleich der Promotoraktivitäten der HER-2/neu+- mit Ras-transformierten Zellen ergab, dass die TAP1/LMP2- und TAP2-Promotoren in beiden Zellen supprimiert werden, während der Tapasin-Promotor bei Ras-Transformation nicht beeinträchtigt ist. Der Einsatz von Inhibitoren zeigte, dass die Suppression des Tapasin-Promotors vermutlich über die PLC-g-PKC-Kaskade erfolgt. Dagegen konnte mit Inhibitoren gegen MAPK und PI3Kinase kein vergleichbarer Effekt erzielt werden. Aufgrund dieser Daten wird postuliert, dass HER-2/neu über die Signalkaskade PLC-g–PKC–E2F/P300 die Tapasin-Promotoraktivität supprimiert, wohingegen noch bisher unbekannte Signalkaskaden von HER-2/neu und Ras zu einer Hemmung der TAP1/LMP2- und TAP2-Promotoraktivität führen. Da die Komplexbildung von E2F und P300 auch im Zellzyklus eine Rolle spielt, wird eine negative Korrelation zwischen Zell-Proliferation und MHC Klasse I-Antigenpräsentation postuliert, die Gegenstand künftiger Studien sein wird.
Resumo:
Tumore des Kopf-Hals Bereiches sprechen aufgrund schneller Resistenzbildung häufig schlecht auf die derzeit praktizierten Bestrahlungstherapien an. Der Erfolg dieser Behandlung wird dabei maßgeblich durch die Strahlenresistenz des malignen Gewebes limitiert. Das Verständnis der zugrunde liegenden zellulären und molekularen Mechanismen ist diesbezüglich unvollständig. Die Resistenzzunahme während der klinischen Behandlung könnte durch die Selektion strahlenresistenter Einzelzellen verursacht werden oder durch die Aktivierung von Resistenzmechanismen. Im Rahmen dieser Arbeit wurde die bestrahlungsvermittelte Freisetzung möglicherweise protektiv wirkender Faktoren durch Tumorzelllinien des Kopf-Hals Bereiches untersucht. Durch Bestrahlung erfolgte eine Induktion von VEGF (vascular endothelial growth factor) und FGF-2 (fibroblast growth factor 2), IL-8 (Interleukin-8) und PGE2 (Prostaglandin E2). Die Untersuchung von VEGF und FGF-2 zeigte weiterhin ein zytoprotektives Potential dieser Faktoren, d.h. die T
Resumo:
Der semileptonische Zerfall K^±→π^0 μ^± υ ist ein geeigneter Kanal zur Be-stimmung des CKM-Matrixelementes 〖|V〗_us |. Das hadronische Matrixelement dieses Zerfalls wird durch zwei dimensionslose Formfaktoren f_± (t) beschrieben. Diese sind abhängig vom Impulsübertrag t=〖(p_K-p_π)〗^2 auf das Leptonpaar. Zur Bestimmung von 〖|V〗_us | dienen die Formfaktoren als wichtige Parameter zur Berechnung des Phasenraumintegrals dieses Zerfalls. Eine präzise Messung der Formfaktoren ist zusätzlich dadurch motiviert, dass das Resultat des NA48-Experimentes von den übrigen Messungen der Experimente KLOE, KTeV und ISTRA+ abweicht. Die Daten einer Messperiode des NA48/2 -Experimentes mit offenem Trigger aus dem Jahre 2004 wurden analysiert. Daraus wählte ich 1.8 Millionen K_μ3^±-Zerfallskandidaten mit einem Untergrundanteil von weniger als 0.1% aus. Zur Bestimmung der Formfaktoren diente die zweidimensionale Dalitz-Verteilung der Daten, nachdem sie auf Akzeptanz des Detektors und auf radiative Effekte korrigiert war. An diese Verteilung wurde die theoretische Parameter-abhängige Funktion mit einer Chiquadrat-Methode angepasst. Es ergeben sich für quadratische, Pol- und dispersive Parametrisierung folgende Formfaktoren: λ_0=(14.82±〖1.67〗_stat±〖0.62〗_sys )×〖10〗^(-3) λ_+^'=(25.53±〖3.51〗_stat±〖1.90〗_sys )×〖10〗^(-3) λ_+^''=( 1.40±〖1.30〗_stat±〖0.48〗_sys )×〖10〗^(-3) m_S=1204.8±〖32.0〗_stat±〖11.4〗_(sys ) MeV/c^2 m_V=(877.4±〖11.1〗_stat±〖11.2〗_(sys ) MeV/c^2 LnC=0.1871±〖0.0088〗_stat±〖0.0031〗_(sys )±=〖0.0056〗_ext Λ_+=(25.42±〖0.73〗_stat±〖0.73〗_(sys )±=〖1.52〗_ext )×〖10〗^(-3) Die Resultate stimmen mit den Messungen der Experimente KLOE, KTeV und ISTRA+ gut überein, und ermöglichen eine Verbesserung des globalen Fits der Formfaktoren. Mit Hilfe der dispersiven Parametrisierung der Formfaktoren, unter Verwendung des Callan-Treiman-Theorems, ist es möglich, einen Wert für f_± (0) zu bestimmen. Das Resultat lautet: f_+ (0)=0.987±〖0.011〗_(NA48/2)±〖0.008〗_(ext ) Der für f_+ (0) berechnete Wert stimmt im Fehler gut mit den vorherigen Messungen von KTeV, KLOE und ISTRA+ überein, weicht jedoch um knapp zwei Standardabweichungen von der theoretischen Vorhersage ab.
Resumo:
Chemotherapeutic drug resistance is one of the major causes for treatment failure in high-risk neuroblastoma (NB), the most common extra cranial solid tumor in children. Poor prognosis is typically associated with MYCN amplification. Here, we utilized a loss-of-function kinome-wide RNA interference screen to identify genes that cause cisplatin sensitization. We identified fibroblast growth factor receptor 2 (FGFR2) as an important determinant of cisplatin resistance. Pharmacological inhibition of FGFR2 confirmed the importance of this kinase in NB chemoresistance. Silencing of FGFR2 sensitized NB cells to cisplatin-induced apoptosis, which was regulated by the downregulation of the anti-apoptotic proteins BCL2 and BCLX(L). Mechanistically, FGFR2 was shown to activate protein kinase C-δ to induce BCL2 expression. FGFR2, as well as the ligand fibroblast growth factor-2, were consistently expressed in primary NB and NB cell lines, indicating the presence of an autocrine loop. Expression analysis revealed that FGFR2 correlates with MYCN amplification and with advanced stage disease, demonstrating the clinical relevance of FGFR2 in NB. These findings suggest a novel role for FGFR2 in chemoresistance and provide a rational to combine pharmacological inhibitors against FGFR2 with chemotherapeutic agents for the treatment of NB.Oncogene advance online publication, 1 October 2012; doi:10.1038/onc.2012.416.
Resumo:
The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.
Resumo:
During development of the vertebrate vascular system essential signals are transduced via protein-tyrosine phosphorylation. Null-mutations of receptor-tyrosine kinase (RTK) genes expressed in endothelial cells (ECs) display early lethal vascular phenotypes. We aimed to identify endothelial protein-tyrosine phosphatases (PTPs), which should have similar importance in EC-biology. A murine receptor-type PTP was identified by a degenerated PCR cloning approach from endothelial cells (VE-PTP). By in situ hybridization this phosphatase was found to be specifically expressed in vascular ECs throughout mouse development. In experiments using GST-fusion proteins, as well as in transient transfections, trapping mutants of VE-PTP co-precipitated with the Angiopoietin receptor Tie-2, but not with the Vascular Endothelial Growth Factor receptor 2 (VEGFR-2/Flk-1). In addition, VE-PTP dephosphorylates Tie-2 but not VEGFR-2. We conclude that VE-PTP is a Tie-2 specific phosphatase expressed in ECs, and VE-PTP phosphatase activity serves to specifically modulate Angiopoietin/Tie-2 function. Based on its potential role as a regulator of blood vessel morphogenesis and maintainance, VE-PTP is a candidate gene for inherited vascular malformations similar to the Tie-2 gene.
Resumo:
The myocyte enhancer factor (MEF)-2 family of transcription factors has been implicated in the regulation of muscle transcription in vertebrates, but the precise position of these regulators within the genetic hierarchy leading to myogenesis is unclear. The MEF2 proteins bind to a conserved A/T-rich DNA sequence present in numerous muscle-specific genes, and they are expressed in the cells of the developing somites and in the embryonic heart at the onset of muscle formation in mammals. The MEF2 genes belong to the MADS box family of transcription factors, which control specific programs of gene expression in species ranging from yeast to humans. Each MEF2 family member contains two highly conserved protein motifs, the MADS domain and the MEF2-specific domain, which together provide the MEF2 factors with their unique DNA binding and dimerization properties. In an effort to further define the function of the MEF2 proteins, and to evaluate the degree of conservation shared among these factors and the phylogenetic pathways that they regulate, we sought to identify MEF2 family members in other species. In Drosophila, a homolog of the vertebrate MEF2 genes was identified and termed D-mef2. The D-MEF2 protein binds to the consensus MEF2 element and can activate transcription through tandem copies of that site. During Drosophila embryogenesis, D-MEF2 is specific to the mesoderm germ layer of the developing embryo and becomes expressed in all muscle cell types within the embryo. The role of D-mef2 in Drosophila embryogenesis was examined by generating a loss-of-function mutation in the D-mef2 gene. In embryos homozygous for this mutant allele, somatic, cardiac, and visceral muscles fail to differentiate, but precursors of these myogenic lineages are normally specified and positioned. These results demonstrate that different muscle cell types share a common myogenic differentiation program controlled by MEF2 and suggest that this program has been conserved from Drosophila to mammals. ^
Resumo:
In vitro engineered tissues which recapitulate functional and morphological properties of bone marrow and bone tissue will be desirable to study bone regeneration under fully controlled conditions. Among the key players in the initial phase of bone regeneration are mesenchymal stem cells (MSCs) and endothelial cells (ECs) that are in close contact in many tissues. Additionally, the generation of tissue constructs for in vivo transplantations has included the use of ECs since insufficient vascularization is one of the bottlenecks in (bone) tissue engineering. Here, 3D cocultures of human bone marrow derived MSCs (hBM-MSCs) and human umbilical vein endothelial cells (HUVECs) in synthetic biomimetic poly(ethylene glycol) (PEG)-based matrices are directed toward vascularized bone mimicking tissue constructs. In this environment, bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2) promotes the formation of vascular networks. However, while osteogenic differentiation is achieved with BMP-2, the treatment with FGF-2 suppressed osteogenic differentiation. Thus, this study shows that cocultures of hBM-MSCs and HUVECs in biological inert PEG matrices can be directed toward bone and bone marrow-like 3D tissue constructs.
Resumo:
Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.
Resumo:
The histology of healing in a tooth extraction socket has been described in many studies. The focus of research in bone biology and healing is now centered on molecular events that regulate repair of injured tissue. Rapid progress in cellular and molecular biology has resulted in identification of many signaling molecules (growth factors and cytokines) associated with formation and repair of skeletal tissues. Some of these include members of the transforming growth factor-β superfamily (including the bone morphogenetic proteins), fibroblast growth factors, platelet derived growth factors and insulin like growth factors. ^ Healing of a tooth extraction socket is a complex process involving tissue repair and regeneration. It involves chemotaxis of appropriate cells into the wound, transformation of undifferentiated mesenchymal cells to osteoprogenitor cells, proliferation and differentiation of committed bone forming cells, extracellular matrix synthesis, mineralization of osteoid, maturation and remodeling of bone. Current data suggests that these cellular events are precisely controlled and regulated by specific signaling molecules. A plethora of cytokines; have been identified and studied in the past two decades. Some of these like transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and fibroblast growth factors (FGFs) are well conserved proteins involved in the initial response to injury and repair in soft and hard tissue. ^ The purpose of this study was to characterize the spatial and temporal localization of TGF-βl, VEGF, PDGF-A, FGF-2 and BMP-2, and secretory IgA in a tooth extraction socket model, and evaluate correlation of spatial and temporal changes of these growth factors to histological events. The results of this study showed positive correlation of histological events to spatial and temporal localization of TGF-β1, BMP-2, FGF-2, PDGF-A, and VEGF in a rabbit tooth extraction model. ^
Resumo:
The heparan sulfate (HS)-fibroblast growth factor (FGF) signaling system is a ubiquitous regulator that senses local environmental changes and mediates cell-to-cell communication. This system consists of three mutually interactive components. These are regulatory polypeptides (FGF), FGF receptor (FGFR) and heparan sulfate proteoglycans (FGFRHS). All four FGFR genes are expressed in the adult liver. Expression of the FGFR1–3 genes is generally associated with non-parenchymal cells while expression of the FGFR4 gene is associated with parenchymal hepatocytes. We showed that livers of mice lacking FGFR4 exhibited normal morphology and regenerated normally in response to partial hepatectomy. However, the FGFR4 (−/−) mice exhibited depleted gallbladders, an elevated bile acid pool and elevated excretion of bile acids. Cholesterol- and bile acid-controlled liver cholesterol 7α-hydroxylase (Cyp7a), the limiting enzyme for bile acid synthesis, was elevated, unresponsive to dietary cholesterol, but repressed normally by dietary cholate. These results indicated that FGFR4 was not directly involved in liver growth but exerted negative control on liver bile acid synthesis. This was confirmed in transgenic mice overexpressing the constitutively active human FGFR4 in livers. The transgenic mice exhibited decreased fecal bile acid excretion, bile acid pool size, and expression of Cyp7a. Introduction of this constitutively active human FGFR4 into FGFR4 (−/−) mice restored the inhibition of bile acid synthesis. Activation of the c-Jun N-terminal Kinase (JNK) pathway by FGFR4 correlated with the repressive effect on bile acid synthesis. ^ To determine whether FGFR4 played a broader role in liver-specific metabolic function, we examined the impact of both acute and chronic exposure to CCl 4 in FGFR4 (−/−) mice. Following acute CCl4 exposure, the FGFR4 (−/−) mice exhibited accelerated liver injury, a significant increase in liver mass and delayed hepatolobular repair, with no apparent effect on liver cell proliferation and restoration of cellularity. Chronic CCl4 exposure resulted in severe fibrosis in livers of FGFR4 (−/−) mice compared to normal mice. Analysis at both mRNA and protein levels indicated an 8 hr delay in FGFR4-deficient mice in the down-regulation of cytochrome P450 2E1 (CYP2E1) protein, the major enzyme whose products underlie CCl 4-induced injury. These results show that hepatocyte FGFR4 protects against acute and chronic insult to the liver and prevents accompanying fibrosis. ^ Of the 23 FGF polypeptides, FGF1 and FGF2 are present at significant levels in the liver. To determine whether FGF1 and FGF2 played a role in CCl 4-induced liver injury and fibrosis, we examined the impact of both acute and chronic exposure to CCl4 in both wild-type and FGF1-FGF2 double-knockout mice. Following acute CCl4 exposure, FGF1(−/−)FGF2(−/−) mice exhibited accelerated liver injury, overall normal liver growth and repair, and decreased liver collagen α1(I) induction. Liver fibrosis resulting from chronic CCl4 exposure was markedly decreased in livers of FGF1(−/−)FGF2(−/−) mice compared to wild-type mice. This study suggests a role for FGF1 and FGF2 in hepatic fibrogenesis. ^ In summary, our three part study shows that specific components of the ubiquitous HS-FGF signaling family in the liver context interfaces with metabolite- and xenobiotic-controlled networks to regulate liver function, but has no apparent direct effect on liver cell growth. ^
Resumo:
Studies on the transcriptional regulation of serum amyloid A1 (SAA1) gene, a liver specific acute-phase gene, identified a regulatory element in its promoter that functioned to repress (SAA1) gene transcription in nonliver cells. This silencer element interacts with a nuclear protein that is detectable in HeLa cells, fibroblasts and placental tissues but not in liver or liver-derived cells. As the expression pattern of this repressor is consistent with its potential regulatory role in repressing SAA1 expression, and that many other liver gene promoters also contain this repressor binding site, we sought to investigate whether this repressor may have a broader functional role in repressing liver genes. ^ We have utilized protein purification, cell culture, transient and stable gene transfection, and molecular biology approaches to identify this protein and investigate its possible function in the regulation of (SAA1) and other liver genes. Analyses of amino acid sequence of the purified nuclear protein, and western blot and gel shift studies identified the repressor as transcription factor AP-2 or AP-2-like protein. Using transient transfection of DNA into cultured cells, we demonstrate that AP-2 can indeed function as a repressor to inhibit transcription of SAA1 gene promoter. This conclusion is supported by the following experimental results: (1) overexpression of AP-2 in hepatoma cells inhibits conditioned medium (CM)-induced expression of SAA1 promoter; (2) binding of AP-2 to the SAA1 promoter is required for AP-2 repression function; (3) one mechanism by which AP-2 inhibits SAA1 may be by antagonizing the activation function of the strong transactivator NFκB; (4) mutation of AP-2 binding sites results in derepression of SAM promoter in HeLa cells; and (5) inhibition of endogenous AP-2 activity by a dominant-negative mutant abolishes AP-2's inhibitory effect on SAM promoter in HeLa cells. In addition to the SAM promoter, AP-2 also can bind to the promoter regions of six other liver genes tested, suggesting that it may have a broad functional role in restricting the expression of many liver genes in nonliver cells. Consistent with this notion, ectopic expression of AP-2 also represses CM-mediated activation of human third component of complement 3 promoter. Finally, in AP-2-expressing stable hepatoma cell lines, AP-2 inhibits not only the expression of endogenous SAA, but also the expression of several other endogenous liver genes including albumin, α-fetoprotein. ^ Our findings that AP-2 has the ability to repress the expression of liver genes in nonliver cells opens a new avenue of investigation of negative regulation of gene transcription, and should improve our understanding of tissue-specific expression of liver genes. In summary, our data provide evidence suggesting a novel role of AP-2 as a repressor, inhibiting the expression of liver genes in nonliver cells. Thus, the tissue-specific expression of AP-2 may constitute an important mechanism contributing to the liver-specific expression of liver genes. ^
Resumo:
During the Atlantic expedition potential gradient, small ion density and space charge density have been recorded. Laborious efforts have been taken for receiving an exact estimation of the reduction factor for the field measurements. The mean value of the potential gradient on the free Atlantic Ocean was 105 V/m. The mean daily course is in very good agreement with the results of the Carnegie Institution. Even records taken on individual days near the quator show this course. For the first time it has been attempted to correlate the potential gradient at sea and the voltage between ionosphere and earth measured over land. A narrow relation has been found in 10 cases of balloon ascents with radiosondes. A further remarkable result is, that the short periodical fluctuations of the air electric field at sea with periods of 2 to 20 minutes have amplitudes of the magnitude of the mean field strength and exist all over the oceans. Recordings of the space charge density show, that positively charged air parcels drift in the first hectometer of the air near the sea surface and produce the fluctuation of the potential gradient. A period analysis did not indicate a recognizable relation to the wind velocity up to now, although an effect of air turbulence must be involved. The concentration of small ions also has been measured occasionally. With this and mean values of the potential gradient the air earth curent density has been computed. With n+ = 310 cm**-3, n- = 220 cm**-3 the air conductivity would be Lambda = 1,14 * 10**-14 Ohm**-1 m**-1. These values are smaller than values of other authors by a factor of 2 or 3. Therefore the computed air earth current density is also smaller. The discrepancy could not be explained yet.
Resumo:
This study focuses on the present-day surface elevation of the Greenland and Antarctic ice sheets. Based on 3 years of CryoSat-2 data acquisition we derived new elevation models (DEMs) as well as elevation change maps and volume change estimates for both ice sheets. Here we present the new DEMs and their corresponding error maps. The accuracy of the derived DEMs for Greenland and Antarctica is similar to those of previous DEMs obtained by satellite-based laser and radar altimeters. Comparisons with ICESat data show that 80% of the CryoSat-2 DEMs have an uncertainty of less than 3 m ± 15 m. The surface elevation change rates between January 2011 and January 2014 are presented for both ice sheets. We compared our results to elevation change rates obtained from ICESat data covering the time period from 2003 to 2009. The comparison reveals that in West Antarctica the volume loss has increased by a factor of 3. It also shows an anomalous thickening in Dronning Maud Land, East Antarctica which represents a known large-scale accumulation event. This anomaly partly compensates for the observed increased volume loss of the Antarctic Peninsula and West Antarctica. For Greenland we find a volume loss increased by a factor of 2.5 compared to the ICESat period with large negative elevation changes concentrated at the west and southeast coasts. The combined volume change of Greenland and Antarctica for the observation period is estimated to be -503 ± 107 km**3/yr. Greenland contributes nearly 75% to the total volume change with -375 ± 24 km**3/yr.