976 resultados para FUNCTIONAL APPLICATIONS
Resumo:
Cistus is a plant genus traditionally used in folk medicine as remedy for several microbial disorders and infections. The abundance of Cistus spp. in the Iberian Peninsula together with their ability to renew after wildfire contribute to their profitability as suppliers of functional ingredients. The aim of this study was to provide a comprehensive characterization of the volatile profile of different Cistus plants grown in Spain:Cistus ladanifer L., Cistus albidus L., Cistus salviifolius L., and Cistus clusii Dunal (the latter has not been studied before). A system combining headspace solid-phase microextraction and gas chromatography coupled to mass spectrometry (HS-SPME-GC–MS) was implemented; thereby, the volatile compounds were extracted and analyzed in a fast, reliable and environment-friendly way. A total of 111 volatile compounds were identified, 28 of which were reported in Cistus for the first time. The most abundant components of the samples (mono and sesquiterpenes) have been previously reported as potent antimicrobial agents. Therefore, this work reveals the potential use of the Cistus spp. studied as natural sources of antimicrobial compounds for industrial production of cosmeceuticals, among other applications.
Resumo:
We consider retarded functional differential equations in the setting of Kurzweil-Henstock integrable functions and we state an averaging result for these equations. Our result generalizes previous ones. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The spectral theory for linear autonomous neutral functional differential equations (FDE) yields explicit formulas for the large time behaviour of solutions. Our results are based on resolvent computations and Dunford calculus, applied to establish explicit formulas for the large time behaviour of solutions of FDE. We investigate in detail a class of two-dimensional systems of FDE. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This work presents a novel approach in order to increase the recognition power of Multiscale Fractal Dimension (MFD) techniques, when applied to image classification. The proposal uses Functional Data Analysis (FDA) with the aim of enhancing the MFD technique precision achieving a more representative descriptors vector, capable of recognizing and characterizing more precisely objects in an image. FDA is applied to signatures extracted by using the Bouligand-Minkowsky MFD technique in the generation of a descriptors vector from them. For the evaluation of the obtained improvement, an experiment using two datasets of objects was carried out. A dataset was used of characters shapes (26 characters of the Latin alphabet) carrying different levels of controlled noise and a dataset of fish images contours. A comparison with the use of the well-known methods of Fourier and wavelets descriptors was performed with the aim of verifying the performance of FDA method. The descriptor vectors were submitted to Linear Discriminant Analysis (LDA) classification method and we compared the correctness rate in the classification process among the descriptors methods. The results demonstrate that FDA overcomes the literature methods (Fourier and wavelets) in the processing of information extracted from the MFD signature. In this way, the proposed method can be considered as an interesting choice for pattern recognition and image classification using fractal analysis.
Resumo:
Phenomenological orbital-polarizition (OP) terms have been repeatedly introduced in the single-particle equations of spin-density-functional theory, in order to improve the description of orbital magnetic moments in systems containing transition metal ions. Here we show that these ad hoc corrections can be interpreted as approximations to the exchange-correlation vector potential A(xc) of current-density functional theory (CDFT). This connection provides additional information on both approaches: phenomenological OP terms are connected to first-principles theory, leading to a rationale for their empirical success and a reassessment of their limitations and the approximations made in their derivation. Conversely, the connection of OP terms with CDFT leads to a set of simple approximations to the CDFT potential A(xc), with a number of desirable features that are absent from electron-gas-based functionals. (C) 2008 Wiley Periodicals, Inc.
Resumo:
Tests on printed circuit boards and integrated circuits are widely used in industry,resulting in reduced design time and cost of a project. The functional and connectivity tests in this type of circuits soon began to be a concern for the manufacturers, leading to research for solutions that would allow a reliable, quick, cheap and universal solution. Initially, using test schemes were based on a set of needles that was connected to inputs and outputs of the integrated circuit board (bed-of-nails), to which signals were applied, in order to verify whether the circuit was according to the specifications and could be assembled in the production line. With the development of projects, circuit miniaturization, improvement of the production processes, improvement of the materials used, as well as the increase in the number of circuits, it was necessary to search for another solution. Thus Boundary-Scan Testing was developed which operates on the border of integrated circuits and allows testing the connectivity of the input and the output ports of a circuit. The Boundary-Scan Testing method was converted into a standard, in 1990, by the IEEE organization, being known as the IEEE 1149.1 Standard. Since then a large number of manufacturers have adopted this standard in their products. This master thesis has, as main objective: the design of Boundary-Scan Testing in an image sensor in CMOS technology, analyzing the standard requirements, the process used in the prototype production, developing the design and layout of Boundary-Scan and analyzing obtained results after production. Chapter 1 presents briefly the evolution of testing procedures used in industry, developments and applications of image sensors and the motivation for the use of architecture Boundary-Scan Testing. Chapter 2 explores the fundamentals of Boundary-Scan Testing and image sensors, starting with the Boundary-Scan architecture defined in the Standard, where functional blocks are analyzed. This understanding is necessary to implement the design on an image sensor. It also explains the architecture of image sensors currently used, focusing on sensors with a large number of inputs and outputs.Chapter 3 describes the design of the Boundary-Scan implemented and starts to analyse the design and functions of the prototype, the used software, the designs and simulations of the functional blocks of the Boundary-Scan implemented. Chapter 4 presents the layout process used based on the design developed on chapter 3, describing the software used for this purpose, the planning of the layout location (floorplan) and its dimensions, the layout of individual blocks, checks in terms of layout rules, the comparison with the final design and finally the simulation. Chapter 5 describes how the functional tests were performed to verify the design compliancy with the specifications of Standard IEEE 1149.1. These tests were focused on the application of signals to input and output ports of the produced prototype. Chapter 6 presents the conclusions that were taken throughout the execution of the work.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The properties of edible films are influenced by several factors, including thickness. The purpose of this paper was to study the influence of thickness on the viscoelasticity properties, water vapor permeability, color and opacity of cassava starch edible films. These films were prepared by a casting technique, the film-forming solutions were 1, 2, 3 and 4% (w/v) of starch, heated to 70degreesC. Different thicknesses were obtained by putting 15 to 70 g of each solution on plexiglass plates. After drying at 30degreesC and ambient relative humidity, these samples were placed for 6 days at RH of 75%, at 22degreesC. The sample thicknesses were determined by a digital micrometer (+/-0.001 mm), as the average of nine different points. The viscoelasticity properties were determined by stress relaxation tests with a texture analyser TA.XT2i (SMS), being applied the Burgers model of four parameters. The water vapor permeability was determined with a gravimetric method, and color and opacity were determined using a Miniscan XE colorimeter, operated according to the Hunterlab method. All the tests were carried out in duplicate at 22degreesC. Practically, the four visco-elasticity properties calculated by the Burgers model had the same behavior, increasing with the thickness of all films, according to a power law model. The water vapor permeability and the color difference increased linearly with the thickness (0.013-0.144 mm) of all films prepared with solution of 1 to 4% of starch. on the other hand, the effect of the variation of the thickness over the opacity, was more important in the films with 1 and 2% of starch. It can be concluded that the control of the thickness in the elaboration of starch films by the casting technique is of extreme importance.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Web service-based application is an architectural style, where a collection of Web services communicates to each other to execute processes. With the popularity increase of developing Web service-based application and once Web services may change, in terms of functional and non-functional Quality of Service (QoS), we need mechanisms to monitor, diagnose, and repair Web services into a Web Application. This work presents a description of self-healing architecture that deals with these mechanisms. Other contributions of this paper are using the proxy server to measure Web service QoS values and to employ some strategies to recovery the effects from misbehaved Web services. © 2008 IEEE.
Resumo:
Dapsona é uma sulfona sintética que é utilizada como um antibiótico em seres humanos e animais para prevenir e tratar doenças, incluindo hanseníase, tuberculose, malária, e pneumonia por Pneumocystis carinii e encefalites por Toxoplasma gondii em pacientes com síndrome da imunodeficiência adquirida (AIDS), bem como em doenças anti-inflamatórias como dermatite herpetiforme. No entanto, este fármaco também está associado com vários efeitos adversos, incluindo a hemólise relacionada com a dose, metemoglobinemia, psicose, neuropatia periférica, agranulocitose, anemia aplástica, síndrome de hipersensibilidade, síndrome de sulfona, e outros. Destes efeitos, a metemoglobinemia é o mais comum efeito adverso da dapsona, que leva a anemia funcional e hipóxia celular com sintomas de cianose, dores de cabeça, fadiga, taquicardia, fraqueza e tonturas. Assim, esta revisão sumariza informações relevantes sobre a estrutura, mecanismo de ação, indicação clínica, e reações adversas de dapsona.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)