957 resultados para FREE-RADICAL MAGNET


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Mestrado, Tecnologia e Segurança Alimentar, 14 de Dezembro de 2015, Universidade dos Açores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydroxycinnamic acids (such as ferulic, caffeic, sinapic, and p-coumaric acids) are a group of compounds highly abundant in food that may account for about one-third of the phenolic compounds in our diet. Hydroxycinnamic acids have gained an increasing interest in health because they are known to be potent antioxidants. These compounds have been described as chain-breaking antioxidants acting through radical scavenging activity, that is related to their hydrogen or electron donating capacity and to the ability to delocalize/stabilize the resulting phenoxyl radical within their structure.The free radical scavenger ability of antioxidants can be predicted from standard one-electron potentials. Thus, voltammetric methods have often been applied to characterize a diversity of natural and synthetic antioxidants essentially to get an insight into their mechanism and also as an important tool for the rational design of new and potent antioxidants.The structure-property-activity relationships (SPARs) correlations already established for this type of compounds suggest that redox potentials could be considered a good measure of antioxidant activity and an accurate guideline on the drug discovery and development process. Due to its magnitude in the antioxidant field, the electrochemistry of hydroxycinnamic acid-based antioxidants is reviewed highlighting the structure-property-activity relationships (SPARs) obtained so far.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thesis submitted to Faculdade de Ciências e Tecnologia from Universidade Nova de Lisboa in partial fulfillment of the requirements for the obtention of the degree of Master of Science in Biotechnology

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho descreve o desenvolvimento de um material sensor para creatinina por impressão molecular em estrutura polimérica (MIP) e a sua aplicação no desenvolvimento de um dispositivo de natureza potenciométrica para a determinação da molécula alvo em fluidos biológicos. A creatinina é um dos biomarcadores mais utilizados no acompanhamento da doença renal, já que é um bom indicador da taxa de filtração glomerular (TFG). Os materiais biomiméticos desenhados para interação com a creatinina foram obtidos por polimerização radicalar, recorrendo a monómeros de ácido metacríclico ou de vinilpiridina e a um agente de reticulação apropriado. De modo a aferir o efeito da impressão da creatinina na resposta dos materiais MIP à sua presença, foram também preparados e avaliados materiais de controlo, obtidos sem impressão molecular (NIP). O controlo da constituição química destes materiais, incluindo a extração da molécula impressa, foi realizado por Espectroscopia de Raman e de Infravermelho com Transformada de Fourrier. A afinidade de ligação entre estes materiais e a creatinina foi também avaliada com base em estudos cinéticos. Todos os materiais descritos foram integrados em membranas selectivas de elétrodos seletivos de ião, preparadas sem ou com aditivo iónico lipófilo, de carga negativa ou positiva. A avaliação das características gerais de funcionamento destes elétrodos, em meios de composição e pH diferentes, indicaram que as membranas com materiais impressos e aditivo aniónico eram as únicas com utilidade analítica. Os melhores resultados foram obtidos em solução tampão Piperazine-N,N′-bis(2- ethanesulfonic acid), PIPES, de pH 2,8, condição que permitiu obter uma resposta quasi-Nernstiana, a partir de 1,6×10-5 mol L-1. Estes elétrodos demonstraram ainda uma boa selectividade ao apresentaram uma resposta preferencial para a creatinina quando na presença de ureia, carnitina, glucose, ácido ascórbico, albumina, cloreto de cálcio, cloreto de potássio, cloreto de sódio e sulfato de magnésio. Os elétrodos foram ainda aplicados com sucesso na análise de amostras sintéticas de urina, quando os materiais sensores eram baseados em ácido metacrilico, e soro, quando os materiais sensores utilizados eram baseados em vinilpiridina.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation toobtaina Master of Science degree in Bioorganics

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cryogen-free superconducting magnet systems have become popular during the last two decades for the simple reason that with the use of liquid helium is rather cumbersome and is a scarce resource. Some available CFMS uses a mechanical cryocooler as cold source of the superconductor magnet. However, the cooling of the sample holder is still made through an open circuit of helium. A thermal management of a completely cryogen-free system is possible to be implemented by using a controlled gas gap heat switch (GGHS) between the cryocooler and the variable temperature insert (VTI). This way it would eliminate the helium open circuit. Heat switches are devices that allow to toggle between two distinct thermal states (ON and OFF state). Several cryogenic applications need good thermal contact and a good thermal insulation at different stages of operation. A versatile GGHS was designed and built with a 100 mm gap and tested with helium as exchange gas. An analytic thermal model was developed and a good agreement with the experimental data was obtained. The device was tested on a crycooler at 4 to 80 K ranges. A 285 mW/K thermal conductance was measured at ON state and 0.09 mW/K at OFF. 3000 ON/OFF thermal conductance ratio was obtained at 4 K with helium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study aimed to characterize the extracts prepared from Pimpinella anisum L. (anise) and Coriandrum sativum L. (coriander) (Apiaceae plants) seeds in terms of phenolic composition, and to correlate the obtained profiles with the antioxidant activity. Anise gave the highest abundance in phenolic compounds (42.09± 0.11 mg/g extract), mainly flavonoids (28.08±0.17 mg/g extract) and phenolic acids (14.01±0.06 mg/g extract), and also the highest antioxidant potential, accessed for the ability to inhibit lipid peroxidation and -carotene bleaching, reducing power and free radical scavenger activity. Apigenin and luteolin derivatives, as also caffeoylquinic acid derivatives appear to be directly related with the higher in vitro antioxidant potential of the anise extract.. In contrast, the weak antioxidant potential of coriander seems to be due to their lower abundance in phenolic compounds (2.24±0.01 mg/g extract). Further studies are necessary to evaluate the in vivo antioxidant potential of the tested extracts, but the performed in vitro experiments highlight them as potential health promoters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia de Plantas MAP - Bioplant

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Genética Molecular

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Horseradish peroxidase (HRP)/H2O2 system catalyzes the free-radical polymerization of aromatic compounds such as lignins and gallate esters. In this work, dodecyl gallate (DG) was grafted onto the surfaces of lignin-rich jute fabrics by HRP-mediated oxidative polymerization with an aim to enhance the hydrophobicity of the fibers. The DG-grafted jute fibers and reaction products of their model compounds were characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The results clearly indicated the grafting of DG to the jute fiber by HRP. Furthermore, the hydrophobicity of jute fabrics was determined by measuring the wetting time and static contact angle. Compared to the control sample, the wetting time and static contact angle of the grated fabrics changed from ~1 s to 1 h and from ~0° to 123.68°, respectively. This clearly proved that the hydrophobicity of jute fabrics improved considerably. Conditions of the HRP-catalyzed DG-grafting reactions were optimized in terms of the DG content of modified jute fabrics. Moreover, the results of breaking strength and elongation of DG-grafted jute/ polypropylene (PP) composites demonstrated improved reinforcement of the composite due to enzymatic hydrophobic modification of jute fibers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: To study the differences between fluvastatin and pravastatin regarding LDL susceptibility to oxidation, plasma levels of total cholesterol (TC), HDL-C, LDL-C and triglycerides (TG) in hypercholesterolemic patients with established coronary heart disease (CHD). METHODS: A double-blind randomized parallel study was conducted that included 41 hypercholesterolemic outpatients with CHD treated at the Instituto de Cardiologia do Rio Grande do Sul. The inclusion criteria were LDL-C above 100 mg/dL and triglycerides below 400 mg/dL based on 2 measures. After 4 weeks on a low cholesterol diet, those patients that fullfilled the inclusion criteria were randomized into 2 groups: the fluvastatin group (fluvastatin 40 mg/day) and the pravastatin group (pravastatin 20 mg/day), for 24 weeks of treatment. LDL susceptibility to oxidation was analyzed with copper-induced production of conjugated dienes (Cu2+) and water-soluble free radical initiator azo-bis (2'-2'amidinopropanil) HCl (AAPH). Spectroscopy nuclear magnetic resonance was used for determination of lipids. RESULTS: After 24 weeks of drug therapy, fluvastatin and pravastatin significantly reduced LDL susceptibility to oxidation as demonstrated by the reduced rate of oxidation (azo and Cu) and by prolonged azo-induced lag time (azo lag). The TC, LDL-C, and TG reduced significantly and HDL-C increased significantly. No differences between the drugs were observed. CONCLUSION: In hypercholesterolemic patients with CHD, both fluvastatin and pravastatin reduced LDL susceptibility to oxidation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To investigate the trace elements (TE) losses and status after trauma, 11 severely injured patients (Injury Severity Score: 29 +/- 6), admitted to the ICU were studied from the day of injury (D0) until D25. Balance studies were started within 24 hours after injury, until D7. Serum and urine samples were collected from D1 to D7, then on D10, 15, 20, and 25. Intravenous TE supplementation was initiated upon admission. SERUM: Selenium (Se) and zinc (Zn) levels were decreased until D7 and were normal thereafter. LOSSES: TE urinary excretions were higher than reference ranges until D20 in all patients. Fluid losses through drains contained large amounts of TE. BALANCES: Balances were slightly positive for copper (Cu) and Zn, and negative for Se from D5 to D7 despite supplements. Cu status exhibited minor changes compared to those observed with the Zn and Se status: Serum levels were decreased and losses increased. Considering the importance of Se and Zn in free radical scavenging, anabolism, and immunity, current recommendations for TE supplements in severely traumatized patients ought to be revised.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ubiquitous free radical, nitric oxide (NO), plays an important role in many biological processes including the regulation of the inflammatory response. Alterations in NO synthesis by endogenous systems likely influence inflammatory processes occurring in a wide range of diseases including many in the cardiovascular system (e.g. atherosclerosis). Progression of inflammatory conditions depends not only upon the recruitment and activation of inflammatory cells but also upon their subsequent removal from the inflammatory milieu. Apoptosis, or programmed cell death, is a fundamental process regulating inflammatory cell survival and is critically involved in ensuring the successful resolution of an inflammatory response. Apoptosis results in shutdown of secretory pathways and renders effete, but potentially highly histotoxic, cells instantly recognisable for non-inflammatory clearance by phagocytes (e.g., macrophages). However, dysregulation of apoptosis and phagocytic clearance mechanisms can have drastic consequences for development and resolution of inflammatory processes. In this review we highlight the complexities of NO-mediated regulation of inflammatory cell apoptosis and clearance by phagocytes and discuss the molecular mechanisms controlling these NO mediated effects. We believe that manipulation of pathways involving NO may have previously unrecognised therapeutic potential for limiting or resolving inflammatory and cardiovascular disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH). Effects of the specific mitoK(ATP) channel opener diazoxide (Diazo, 50 microM) or the blocker 5-hydroxydecanoate (5-HD, 500 microM), the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 microM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 microM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or L-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, L-NAME, or Chel, whereas protection of the PR interval was abolished by L-NAME exclusively. Thus pharmacological opening of the mitoK(ATP) channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.