970 resultados para FLOW-ANALYSIS
Resumo:
In this work a micro-heater device to be used as an integral part of the flow analysis manifold is described. The usefulness of the device was demonstrated using it in the development of a multicommutated flow analysis procedure for the spectrophotometric determination of manganese in plant digest. The method was based on the manganese oxidation by periodate in phosphoric acid medium to form the permanganate anion. The reaction development is dependent on the temperature and it was observed that at 25 °C a time interval of ca. 15 min was necessary for the reaction to attain equilibrium. Setting the temperature to 70 ºC, this time interval could be decreased to ca. 30 s. This condition was easily attained employing the proposed micro-heater device coupled to the manifold. The procedure was applied to manganese determination in soybean digests and results compared with those obtained by inductively coupled argon plasma optical emission spectrometry (ICP-OES). No significant difference at 90% confidence level was observed. A linear response for sample concentrations ranging from 5.0 to 30.00 mg L-1 Mn2+; a relative standard deviation of 1.3% (n = 6) for a typical sample containing 6.3 mg L-1 Mn2+; a sampling rate of 22 determinations per hour; a low reagent consumption, of 12.0 mg NaIO4 per determination; and a detection limit of 1.2 mg L-1 were achieved.
Resumo:
A digital multimeter (~U$ 240.00 on the national market) connected to a microcomputer by a RS-232 serial interface is proposed for data acquisition in equipment with analog output. Data are measured at the rate of 2 points per second and stored in text files by the software that accompanies the device, running in a Windows environment. The performance of the multimeter was verified by monitoring the transient signals generated in flow injection systems associated with fluorimetric, spectrophotometric and flame photometric detection. In addition, the performance of the proposed device was similar to that attained by employing an interface card with a 12-bit analog-to-digital converter for acquisition of the signals generated by a capillary electrophoresis equipment with oscillometric detection.
Resumo:
An experiment is proposed to introduce some fundamentals of flow analysis, chemiluminescence and kinetic monitoring of enzymatic reactions in undergraduate courses. Chemiluminescence detection is performed with a simple spectrophotometer equipped with a lab-made spiral flow cell constructed from a polyethylene tube. The hydrogen peroxide produced by the glucose oxidation in the presence of glucose oxidase is continuously monitored by the reaction with luminol in alkaline media in a flow injection system. The exercise allows also the discussion of important analytical features and the comparison with different optical methods of analysis.
Resumo:
Spectrophotometry is one of the most widespread analytical techniques due to its simplicity, reliability, and low-cost instrumentation for both direct measurements and coupled to other techniques or processes such as chromatography, electrophoresis and flow analysis. However, the application is often limited by sensitivity. This article describes some advances that greatly improve the performance of spectrophotometric measurements, especially in order to increase sensitivity, including the employment of liquid-core waveguides and solid-phase spectrophotometry.
Resumo:
Essential aspects for characterization of a flow-based analytical procedure or system are discussed in order to permit the composition of a checklist that will lead to a protocol for reporting results and systems in flow analysis. Aspects more related to chromatographic procedures are not considered. The intent is to present normalized proposals in the field of flow analysis for practitioners and developers.
Resumo:
The behaviour of Nafion® polymeric membranes containing acid-base dyes, bromothymol blue (BB) and methyl violet (MV), were studied aiming at constructing an optical sensor for pH measurement. BB revealed to be inadequate for developing sensing phases due to the electrostatic repulsion between negative groups of their molecules and the negative charge of the sulfonate group of the Nafion®, which causes leaching of the dye from the membrane. On the other hand, MV showed to be suitable due to the presence of positive groups in its structure. The membrane prepared from a methanolic solution whose Nafion®/dye molar ratio was 20 presented the best analytical properties, changing its color from green to violet in the pH range from 0.6 to 3.0. The membrane can be prepared with good reproducibility, presenting durability of ca. 6 months and response time of 22 s, making possible its use for pH determination in flow analysis systems.
Uso da pressão gerada por uma coluna de água para controle da vazão em sistemas de análises em fluxo
Resumo:
This work presents a new approach to control the flow rate in hydrodynamic flow experiments. The combination of air pressure generated by an aquarium air pump and the pressure generated by a water column were used for this purpose. This device supports a stable flow rate without pulsation for a long period of time. Furthermore, the flow rate can be easily controlled at various values in one or more streams. The performance of this approach was investigated using Fe(CN)6(4-) solutions in flowing systems using amperometric and voltammetric detection in wall-jet configuration. The results showed that the performance of the proposed device was better than a commercial peristaltic pump. It suggests that this approach can be used successfully in flow analysis systems.
Resumo:
A simple and low-cost flow cell with 30 cm optical path for spectrophotometric measurements is described. It presents desirable characteristics such as low attenuation of the radiation beam and internal volume (75 µL) comparable to that of a 1-cm conventional cell (80 µL). Despite the increase in optical path, the effect on sample dispersion was also similar to that attained in the commercial cell. The performance of the cell was assessed by the determination of phosphate based on the molybdenum blue method, yielding a linear response range between 0.05 and 0.8 mg L-1 phosphorus (r=0.999). The increase in sensitivity (30.4-fold) in comparison with that obtained with a conventional 1-cm flow cell agreed with that estimated by the Lambert-Beer law.
Resumo:
A multicommuted method for determination of chlorine in water samples using a 100-cm cell was developed. In this method, orto-Tolidine reacts with chlorine and the product was monitored at 438 nm. The analytical curve for chlorine was linear in concentration range from 1.34x10-6 to 2.01x10-5 mol L-1 with a detection limit of 9.40x10-8 mol L-1. A sampling rate of 45 h-1and a RSD of 1.0 % (n = 15) were obtained. The method was applied with success for chlorine determination in six water samples.
Resumo:
A binary sampling flow analysis system equipped with gas diffusion cell was developed for NH4+ and/or NH2Cl determination in wastewater and disinfection products samples based on the Berthelot reaction of the NH2Cl diffused through the semi-permeable PTFE membrane. The effect of the analytical conditions related to the reaction and flow parameters were evaluated and N-NH4+ and N-NH2Cl were determined in concentration ranges from 0.17 to 5 mg L-1 and from 0.5 to 14.5 mg L-1, respectively. Limits of detection (3σ) of 50 and 140 µg L-1 for N-NH4+ and N-NH2Cl were calculated, respectively, and RSD of 5 and 2% were calculated for 10 consecutive determinations of N-NH4+ (1 and 3 mg L-1) and N-NH2Cl (3 and 9 mg L-1), respectively with 30 determinations h-1.
Resumo:
The present work describes a low-cost electrochemical "wall-jet" detector for flow analysis. The electrolytic solution enters into the cell through a tube of stainless steel (200 to 300 µm i.d), reaching to the center of the working electrode perpendicularly and then being mixed to the remaining solution in the cell, which flows under atmospheric pressure into a waste reservoir. The proposed electrochemical detector can be used with any type of working electrode, from commercial to home-made, such as glassy carbon and metallic electrodes (modified or unmodified), which enlarge the applications of the electrochemical detector.
Resumo:
The restricted availability of water sources suitable for consumption and high costs for obtaining potable water has caused an increase of the conscience concerning the use. Thus, there is a high demand for "environmentally safe methods" which are according to the principles of Green Chemistry. Moreover, these methods should be able to provide reliable results for the analysis of water quality for various pollutants, such as phenol. In this work, greener alternatives for sample preparation for phenol determination in aqueous matrices are presented, which include: liquid phase microextraction, solid phase microextraction, flow analysis, cloud point extraction and aqueous two-phase systems.
Resumo:
A flow system based on the sandwich technique is proposed for the sequential determination of ascorbic acid, dipyrone, acetylcysteine, captopril and paracetamol. The procedure is based on the reduction of Cu(II) by the analytes followed by the spectrophotometric measurement of the complex of Cu(I) with 2,2'-biquinoline 4,4'-dicarboxylic acid. Linear responses were achieved in the µmol L-1 range, with coefficients of variation better than 1.7%. Sampling rate was estimated as 60 determinations per hour, consuming 230 µg of BQA and generating 2.5 mL of waste per determination. Results for commercial samples agreed with those obtained by procedures recommended by the American and European pharmacopeias at the 95% confidence level.
Resumo:
This paper describes the use of the open source hardware platform, denominated "Arduino", for controlling solenoid valves for solutions handling in flow analysis systems. System assessment was carried out by spectrophotometric determination of iron (II) in natural water. The sampling rate was estimated as 45 determinations per hour and the coefficient of variation was lower than 3%. Per determination, 208 µg of 1-10-phenanthroline and ascorbic acid were consumed, generating 1.3 mL of waste. "Arduino" proved a reliable microcontroller with low cost and simple interfacing, allowing USB communication for solenoid device switching in flow systems.
Resumo:
AbstractA device comprising a lab-made chamber with mechanical stirring and computer-controlled solenoid valves is proposed for the mechanization of liquid-liquid extractions. The performance was demonstrated by the extraction of ethanol from biodiesel as a model of the extraction of analytes from organic immiscible samples to an aqueous medium. The volumes of the sample and extractant were precisely defined by the flow-rates and switching times of the valves, while the mechanic stirring increased interaction between the phases. Stirring was stopped for phase separation, and a precise time-control also allowed a successful phase separation (i.e., the absence of the organic phase in the aqueous extract). In the model system, a linear response between the analytical response and the number of extractions was observed, indicating the potential for analyte preconcentration in the extract. The efficiency and reproducibility of the extractions were demonstrated by recoveries of ethanol spiked to biodiesel samples within 96% and 100% with coefficients of variation lower than 3.0%.