939 resultados para Exponential versus non-exponential decay


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homo-oligofluorenes (OFn), polyfluorenes (PF2/6) and oligofluorenes with one fluorenenone group in the center (OFnK) were synthesized. They were used as model compounds to understand of the structure-property relationships of polyfluorenes and the origin of the green emission in the photoluminescence (after photooxidation of the PFs) and the electroluminescence (EL) spectra. The electronic, electrochemical properties, thermal behavior, supramolecular self-assembly, and photophysical properties of OFn, PF2/6 and OFnK were investigated. Oligofluorenes with 2-ethylhexyl side chain (OF2-OF7) from the dimer up to the heptamer were prepared by a series of stepwise transition metal mediated Suzuki and Yamamoto coupling reactions. Polyfluorene was synthesized by Yamamoto coupling of 2,7-dibromo-9,9-bis(2-ethylhexyl)fluorene. Oligofluorenes with one fluorenone group in the center (OF3K, OF5K, OF7K) were prepared by Suzuki coupling between the monoboronic fluorenyl monomer, dimer, trimer and 2, 7-dibromofluorenone. The electrochemical and electronic properties of homo-oligofluorenes (OFn) were systematically studied by several combined techniques such as cyclic voltammetry, differential pulse voltammetry, UV-vis absorption spectroscopy, steady and time-resolved fluorescence spectroscopy. It was found that the oligofluorenes behave like classical conjugated oligomers, i.e., with the increase of the chain-length, the corresponding oxidation potential, the absorption and emission maximum, ionization potential, electron affinity, band gap and the photoluminescence lifetime displayed a very good linear relation with the reciprocal number of the fluorene units (1/n). The extrapolation of these linear relations to infinite chain length predicted the electrochemical and electronic properties of the corresponding polyfluorenes. The thermal behavior, single-crystal structure and supramolecular packing, alignment properties, and molecular dynamics of the homo-oligofluorenes (OFn) up to the polymer were studied using techniques such as TGA, DSC, WAXS, POM and DS. The OFn from tetramer to heptamer show a smectic liquid crystalline phase with clearly defined isotropization temperature. The oligomers do show a glass transition which exhibits n-1 dependence and allows extrapolation to a hypothetical glass transition of the polymer at around 64 °C. A smectic packing and helix-like conformation for the oligofluorenes from tetramer to heptamer was supported by WAXS experiments, simulation, and single-crystal structure of some oligofluorene derivatives. Oligofluorenes were aligned more easily than the corresponding polymer, and the alignability increased with the molecular length from tetramer to heptamer. The molecular dynamics in a series of oligofluorenes up to the polymer was studied using dielectric spectroscopy. The photophysical properties of OFn and PF2/6 were investigated by the steady-state spectra (UV-vis absorption and fluorescence spectra) and time-resolved fluorescence spectra both in solution and thin film. The time-resolved fluorescence spectra of the oligofluorenes were measured by streak camera and gate detection technique. The lifetime of the oligofluorenes decreased with the extension of the chain-length. No green emission was observed in CW, prompt and delayed fluorescence for oligofluorenes in m-THF and film at RT and 77K. Phosphorescence was observed for oligofluorenes in frozen dilute m-THF solution at 77K and its lifetime increased with length of oligofluorenes. A linear relation was obtained for triplet energy and singlet energy as a function of the reciprocal degree of polymerization, and the singlet-triplet energy gap (S1-T1) was found to decrease with the increase of degree of polymerization. Oligofluorenes with one fluorenone unit at the center were used as model compounds to understand the origin of the low-energy (“green”) emission band in the photoluminescence and electroluminescence spectra of polyfluorenes. Their electrochemical properties were investigated by CV, and the ionization potential (Ip) and electron affinity (Ea) were calculated from the onset of oxidation and reduction of OFnK. The photophysical properties of OFnK were studied in dilute solution and thin film by steady-state spectra and time-resolved fluorescence spectra. A strong green emission accompanied with a weak blue emission were obtained in solution and only green emission was observed on film. The strong green emission of OFnK suggested that rapid energy transfer takes place from higher energy sites (fluorene segments) to lower energy sites (fluorenone unit) prior to the radiative decay of the excited species. The fluorescence spectra of OFnK also showed solvatochromism. Monoexponential decay behaviour was observed by time-resolved fluorescence measurements. In addition, the site-selective excitation and concentration dependence of the fluorescence spectra were investigated. The ratio of green and blue emission band intensities increases with the increase of the concentration. The observed strong concentration dependence of the green emission band in solution suggests that increased interchain interactions among the fluorenone-containing oligofluorene chain enhanced the emission from the fluorenone defects at higher concentration. On the other hand, the mono-exponential decay behaviour and power dependence were not influenced significantly by the concentration. We have ruled out the possibility that the green emission band originates from aggregates or excimer formation. Energy transfer was further investigated using a model system of a polyfluorene doped by OFnK. Förster-type energy transfer took place from PF2/6 to OFnK, and the energy transfer efficiency increased with increasing of the concentration of OFnK. Efficient funneling of excitation energy from the high-energy fluorene segments to the low-energy fluorenone defects results from energy migration by hopping of excitations along a single polymer chain until they are trapped on the fluorenone defects on that chain or transferred onto neighbouring chains by Förster-type interchain energy transfer process. These results imply that the red-shifted emission in polyfluorenes can originate from (usually undesirable) keto groups at the bridging carbon atoms-especially if the samples have been subject to photo- or electro-oxidation or if fluorenone units are present due to an improper purification of the monomers prior to polymerization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der AMANDA-II Detektor ist primär für den richtungsaufgelösten Nachweis hochenergetischer Neutrinos konzipiert. Trotzdem können auch niederenergetische Neutrinoausbrüche, wie sie von Supernovae erwartet werden, mit hoher Signifikanz nachgewiesen werden, sofern sie innerhalb der Milchstraße stattfinden. Die experimentelle Signatur im Detektor ist ein kollektiver Anstieg der Rauschraten aller optischen Module. Zur Abschätzung der Stärke des erwarteten Signals wurden theoretische Modelle und Simulationen zu Supernovae und experimentelle Daten der Supernova SN1987A studiert. Außerdem wurden die Sensitivitäten der optischen Module neu bestimmt. Dazu mussten für den Fall des südpolaren Eises die Energieverluste geladener Teilchen untersucht und eine Simulation der Propagation von Photonen entwickelt werden. Schließlich konnte das im Kamiokande-II Detektor gemessene Signal auf die Verhältnisse des AMANDA-II Detektors skaliert werden. Im Rahmen dieser Arbeit wurde ein Algorithmus zur Echtzeit-Suche nach Signalen von Supernovae als Teilmodul der Datennahme implementiert. Dieser beinhaltet diverse Verbesserungen gegenüber der zuvor von der AMANDA-Kollaboration verwendeten Version. Aufgrund einer Optimierung auf Rechengeschwindigkeit können nun mehrere Echtzeit-Suchen mit verschiedenen Analyse-Zeitbasen im Rahmen der Datennahme simultan laufen. Die Disqualifikation optischer Module mit ungeeignetem Verhalten geschieht in Echtzeit. Allerdings muss das Verhalten der Module zu diesem Zweck anhand von gepufferten Daten beurteilt werden. Dadurch kann die Analyse der Daten der qualifizierten Module nicht ohne eine Verzögerung von etwa 5 Minuten geschehen. Im Falle einer erkannten Supernova werden die Daten für die Zeitdauer mehrerer Minuten zur späteren Auswertung in 10 Millisekunden-Intervallen archiviert. Da die Daten des Rauschverhaltens der optischen Module ansonsten in Intervallen von 500 ms zur Verfgung stehen, ist die Zeitbasis der Analyse in Einheiten von 500 ms frei wählbar. Im Rahmen dieser Arbeit wurden drei Analysen dieser Art am Südpol aktiviert: Eine mit der Zeitbasis der Datennahme von 500 ms, eine mit der Zeitbasis 4 s und eine mit der Zeitbasis 10 s. Dadurch wird die Sensitivität für Signale maximiert, die eine charakteristische exponentielle Zerfallszeit von 3 s aufweisen und gleichzeitig eine gute Sensitivität über einen weiten Bereich exponentieller Zerfallszeiten gewahrt. Anhand von Daten der Jahre 2000 bis 2003 wurden diese Analysen ausführlich untersucht. Während die Ergebnisse der Analyse mit t = 500 ms nicht vollständig nachvollziehbare Ergebnisse produzierte, konnten die Resultate der beiden Analysen mit den längeren Zeitbasen durch Simulationen reproduziert und entsprechend gut verstanden werden. Auf der Grundlage der gemessenen Daten wurden die erwarteten Signale von Supernovae simuliert. Aus einem Vergleich zwischen dieser Simulation den gemessenen Daten der Jahre 2000 bis 2003 und der Simulation des erwarteten statistischen Untergrunds kann mit einem Konfidenz-Niveau von mindestens 90 % gefolgert werden, dass in der Milchstraße nicht mehr als 3.2 Supernovae pro Jahr stattfinden. Zur Identifikation einer Supernova wird ein Ratenanstieg mit einer Signifikanz von mindestens 7.4 Standardabweichungen verlangt. Die Anzahl erwarteter Ereignisse aus dem statistischen Untergrund beträgt auf diesem Niveau weniger als ein Millionstel. Dennoch wurde ein solches Ereignis gemessen. Mit der gewählten Signifikanzschwelle werden 74 % aller möglichen Vorläufer-Sterne von Supernovae in der Galaxis überwacht. In Kombination mit dem letzten von der AMANDA-Kollaboration veröffentlicheten Ergebnis ergibt sich sogar eine obere Grenze von nur 2.6 Supernovae pro Jahr. Im Rahmen der Echtzeit-Analyse wird für die kollektive Ratenüberhöhung eine Signifikanz von mindestens 5.5 Standardabweichungen verlangt, bevor eine Meldung über die Detektion eines Supernova-Kandidaten verschickt wird. Damit liegt der überwachte Anteil Sterne der Galaxis bei 81 %, aber auch die Frequenz falscher Alarme steigt auf bei etwa 2 Ereignissen pro Woche. Die Alarm-Meldungen werden über ein Iridium-Modem in die nördliche Hemisphäre übertragen, und sollen schon bald zu SNEWS beitragen, dem weltweiten Netzwerk zur Früherkennung von Supernovae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this project is to experimentally demonstrate geometrical nonlinear phenomena due to large displacements during resonant vibration of composite materials and to explain the problem associated with fatigue prediction at resonant conditions. Three different composite blades to be tested were designed and manufactured, being their difference in the composite layup (i.e. unidirectional, cross-ply, and angle-ply layups). Manual envelope bagging technique is explained as applied to the actual manufacturing of the components; problems encountered and their solutions are detailed. Forced response tests of the first flexural, first torsional, and second flexural modes were performed by means of a uniquely contactless excitation system which induced vibration by using a pulsed airflow. Vibration intensity was acquired by means of Polytec LDV system. The first flexural mode is found to be completely linear irrespective of the vibration amplitude. The first torsional mode exhibits a general nonlinear softening behaviour which is interestingly coupled with a hardening behaviour for the unidirectional layup. The second flexural mode has a hardening nonlinear behaviour for either the unidirectional and angle-ply blade, whereas it is slightly softening for the cross-ply layup. By using the same equipment as that used for forced response analyses, free decay tests were performed at different airflow intensities. Discrete Fourier Trasform over the entire decay and Sliding DFT were computed so as to visualise the presence of nonlinear superharmonics in the decay signal and when they were damped out from the vibration over the decay time. Linear modes exhibit an exponential decay, while nonlinearities are associated with a dry-friction damping phenomenon which tends to increase with increasing amplitude. Damping ratio is derived from logarithmic decrement for the exponential branch of the decay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of pulmonary edema is divided in cardiogenic and non-cardiogenic. Cardiogenic edema pathogenically is caused by elevated hydrostatic pressure in the pulmonary capillaries due to left sided congestive heart failure. Non-cardiogenic pulmonary edema is categorized depending on the underlying pathogenesis in low-alveolar pressure, elevated permeability or neurogenic edema. Some important examples of causes are upper airway obstruction like in laryngeal paralysis or strangulation for low alveolar pressure, leptospirosis and ARDS for elevated permeability, and epilepsy, brain trauma and electrocution for neurogenic edema. The differentiation between cardiogenic versus non-cardiogenic genesis is not always straightforward, but most relevant, because treatment markedly differs between the two. Of further importance is the identification of the specific underlying cause in non-cardiogenic edema, not only for therapeutic but particularly for prognostic reasons. Depending on the cause the prognosis ranges from very poor to good chance of complete recovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Understanding the composition and dynamics of the upper respiratory tract microbiota in healthy infants is a prerequisite to investigate the role of the microbiota in patients with respiratory diseases. This is especially true in early life, when the immune system is in development. OBJECTIVE We sought to describe the dynamics of the upper respiratory tract microbiota in healthy infants within the first year of life. METHODS After exclusion of low-quality samples, microbiota characterization was performed by using 16S rDNA pyrosequencing of 872 nasal swabs collected biweekly from 47 unselected infants. RESULTS Bacterial density increased and diversity decreased within the first year of life (R(2) = 0.95 and 0.73, respectively). A distinct profile for the first 3 months of life was found with increased relative abundances of Staphlyococcaceae and Corynebacteriaceae (exponential decay: R(2) = 0.94 and 0.96, respectively). In addition, relative bacterial abundance and composition differed significantly from summer to winter months. The individual composition of the microbiota changed with increasing time intervals between samples and was best modeled by an exponential function (R(2) = 0.97). Within-subject dissimilarity in a 2-week time interval was consistently lower than that between subjects, indicating a personalized microbiota. CONCLUSION This study reveals age and seasonality as major factors driving the composition of the nasal microbiota within the first year of life. A subject's microbiota is personalized but dynamic throughout the first year. These data are indispensable to interpretation of cross-sectional studies and investigation of the role of the microbiota in both healthy subjects and patients with respiratory diseases. They might also serve as a baseline for future intervention studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantified postdepositional losses of methane sulfonate (MSA-), nitrate, and chloride at the European Project for Ice Coring in Antarctica (EPICA) drilling site in Dronning Maud Land (DML) (75°S, 0°E). Analyses of four intermediate deep firn cores and 13 snow pits were considered. We found that about 26 ± 13% of the once deposited nitrate and typically 51 ± 20% of MSA- were lost, while for chloride, no significant depletion could be observed in firn older than one year. Assuming a first order exponential decay rate, the characteristic e-folding time for MSA- is 6.4 ± 3 years and 19 ± 6 years for nitrate. It turns out that for nitrate and MSA- the typical mean concentrations representative for the last 100 years were reached after 5.4 and 6.5 years, respectively, indicating that beneath a depth of around 1.2-1.4 m postdepositional losses can be neglected. In the area of investigation, only MSA- concentrations and postdepositional losses showed a distinct dependence on snow accumulation rate. Consequently, MSA- concentrations archived at this site should be significantly dependent on the variability of annual snow accumulation, and we recommend a corresponding correction. With a simple approach, we estimated the partial pressure of the free acids MSA, HNO3, and HCl on the basis of Henry's law assuming that ionic impurities of the bulk ice matrix are localized in a quasi-brine layer (QBL). In contrast to measurements, this approach predicts a nearly complete loss of MSA-, NO3 - , and Cl-.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by the observation of spiral patterns in a wide range of physical, chemical, and biological systems, we present an automated approach that aims at characterizing quantitatively spiral-like elements in complex stripelike patterns. The approach provides the location of the spiral tip and the size of the spiral arms in terms of their arc length and their winding number. In addition, it yields the number of pattern components (Betti number of order 1), as well as their size and certain aspects of their shape. We apply the method to spiral defect chaos in thermally driven Rayleigh- Bénard convection and find that the arc length of spirals decreases monotonically with decreasing Prandtl number of the fluid and increasing heating. By contrast, the winding number of the spirals is nonmonotonic in the heating. The distribution function for the number of spirals is significantly narrower than a Poisson distribution. The distribution function for the winding number shows approximately an exponential decay. It depends only weakly on the heating, but strongly on the Prandtl number. Large spirals arise only for larger Prandtl numbers. In this regime the joint distribution for the spiral length and the winding number exhibits a three-peak structure, indicating the dominance of Archimedean spirals of opposite sign and relatively straight sections. For small Prandtl numbers the distribution function reveals a large number of small compact pattern components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Follicular dendritic cells (FDC) provide a reservoir for HIV type 1 (HIV-1) that may reignite infection if highly active antiretroviral therapy (HAART) is withdrawn before virus on FDC is cleared. To estimate the treatment time required to eliminate HIV-1 on FDC, we develop deterministic and stochastic models for the reversible binding of HIV-1 to FDC via ligand–receptor interactions and examine the consequences of reducing the virus available for binding to FDC. Analysis of these models shows that the rate at which HIV-1 dissociates from FDC during HAART is biphasic, with an initial period of rapid decay followed by a period of slower exponential decay. The speed of the slower second stage of dissociation and the treatment time required to eradicate the FDC reservoir of HIV-1 are insensitive to the number of virions bound and their degree of attachment to FDC before treatment. In contrast, the expected time required for dissociation of an individual virion from FDC varies sensitively with the number of ligands attached to the virion that are available to interact with receptors on FDC. Although most virions may dissociate from FDC on the time scale of days to weeks, virions coupled to a higher-than-average number of ligands may persist on FDC for years. This result suggests that HAART may not be able to clear all HIV-1 trapped on FDC and that, even if clearance is possible, years of treatment will be required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fast excitation-driven fluctuations in the fluorescence emission of yellow-shifted green fluorescent protein mutants T203Y and T203F, with S65G/S72A, are discovered in the 10−6–10−3-s time range, by using fluorescence correlation spectroscopy at 10−8 M. This intensity-dependent flickering is conspicuous at high pH, with rate constants independent of pH and viscosity with a minor temperature effect. The mean flicker rate increases linearly with excitation intensity for at least three decades, but the mean dark fraction of the molecules undergoing these dynamics is independent of illumination intensity over ≈6 × 102 to 5 × 106 W/cm2. These results suggest that optical excitation establishes an equilibration between two molecular states of different spectroscopic properties that are coupled only via the excited state as a gateway. This reversible excitation-driven transition has a quantum efficiency of ≈10−3. Dynamics of external protonation, reversibly quenching the fluorescence, are also observed at low pH in the 10- to 100-μs time range. The independence of these two bright–dark flicker processes implies the existence of at least two separate dark states of these green fluorescent protein mutants. Time-resolved fluorescence measurements reveal a single exponential decay of the excited state population with 3.8-ns lifetime, after 500-nm excitation, that is pH independent. Our fluorescence correlation spectroscopy results are discussed in terms of recent theoretical studies that invoke isomerization of the chromophore as a nonradiative channel of the excited state relaxation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isotropic 14N-hyperfine coupling constant, a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{o}^{N}}}\end{equation*}\end{document}, of nitroxide spin labels is dependent on the local environmental polarity. The dependence of a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{o}^{N}}}\end{equation*}\end{document} in fluid phospholipid bilayer membranes on the C-atom position, n, of the nitroxide in the sn-2 chain of a spin-labeled diacyl glycerophospholipid therefore determines the transmembrane polarity profile. The polarity variation in phospholipid membranes, with and without equimolar cholesterol, is characterized by a sigmoidal, trough-like profile of the form {1 + exp [(n − no)/λ]}−1, where n = no is the point of maximum gradient, or polarity midpoint, beyond which the free energy of permeation decreases linearly with n, on a characteristic length-scale, λ. Integration over this profile yields a corresponding expression for the permeability barrier to polar solutes. For fluid membranes without cholesterol, no ≈ 8 and λ ≈ 0.5–1 CH2 units, and the permeability barrier introduces an additional diffusive resistance that is equivalent to increasing the effective membrane thickness by 35–80%, depending on the lipid. For membranes containing equimolar cholesterol, no ≈ 9–10, and the total change in polarity is greater than for membranes without cholesterol, increasing the permeability barrier by a factor of 2, whereas the decay length remains similar. The permeation of oxygen into fluid lipid membranes (determined by spin-label relaxation enhancements) displays a profile similar to that of the transmembrane polarity but of opposite sense. For fluid membranes without cholesterol no ≈ 8 and λ ≈ 1 CH2 units, also for oxygen. The permeation profile for polar paramagnetic ion complexes is closer to a single exponential decay, i.e., no lies outside the acyl-chain region of the membrane. These results are relevant not only to the permeation of water and polar solutes into membranes and their permeabilities, but also to depth determinations of site-specifically spin-labeled protein residues by using paramagnetic relaxation agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Indigenous Australians are at high risk for cardiovascular disease and type 2 diabetes. Carotid artery intimal medial thickness (CIMT) and brachial artery flow-mediated vasodilation (FMD) are ultrasound imaging based surrogate markers of cardiovascular risk. This study examines the relative contributions of traditional cardiovascular risk factors on CIMT and FMD in adult Indigenous Australians with and without type 2 diabetes mellitus. Method: One hundred and nineteen Indigenous Australians were recruited. Physical and biochemical markers of cardiovascular risk, together with CIMT and FMD were meausred for all subjects. Results: Fifty-three Indigenous Australians subjects (45%) had type 2 diabetes mellitus. There was a significantly greater mean CIMT in diabetic versus non-diabetic subjects (p = 0.049). In the non-diabetic group with non-parametric analyses, there were significant correlations between CIMT and: age (r = 0.64, p < 0.001), systolic blood pressure (r = 0.47, p < 0.001) and non-smokers (r = -0.30, p = 0.018). In the diabetic group, non-parametric analysis showed correlations between CIMT, age (r = 0.36, p = 0.009) and duration of diabetes (r = 0.30, p = 0.035) only. Adjusting forage, sex, smoking and history of cardiovascular disease, Hb(A1c) became the sole significant correlate of CIMT (r = 0.35,p = 0.01) in the diabetic group. In non-parametric analysis, age was the sole significant correlate of FMD (r = -0.31,p = 0.013), and only in non-diabetic subjects. Linear regression analysis showed significant associations between CIMT and age (t = 4.6,p < 0.001), systolic blood pressure (t = 2.6, p = 0.010) and Hb(A1c) (t = 2.6, p = 0.012), smoking (t = 2.1, p = 0.04) and fasting LDL-cholesterol (t = 2.1, p = 0.04). There were no significant associations between FMD and examined cardiovascular risk factors with linear regression analysis Conclusions: CIMT appears to be a useful surrogate marker of cardiovascular risk in this sample of Indigenous Australian subjects, correlating better than FMD with established cardiovascular risk factors. A lifestyle intervention programme may alleviate the burden of cardiovascular disease in Indigenous Australians by reducing central obesity, lowering blood pressure, correcting dyslipidaemia and improving glycaemic control. CIMT may prove to be a useful tool to assess efficacy of such an intervention programme. (c) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recurrence interval statistics for regional seismicity follows a universal distribution function, independent of the tectonic setting or average rate of activity (Corral, 2004). The universal function is a modified gamma distribution with power-law scaling of recurrence intervals shorter than the average rate of activity and exponential decay for larger intervals. We employ the method of Corral (2004) to examine the recurrence statistics of a range of cellular automaton earthquake models. The majority of models has an exponential distribution of recurrence intervals, the same as that of a Poisson process. One model, the Olami-Feder-Christensen automaton, has recurrence statistics consistent with regional seismicity for a certain range of the conservation parameter of that model. For conservation parameters in this range, the event size statistics are also consistent with regional seismicity. Models whose dynamics are dominated by characteristic earthquakes do not appear to display universality of recurrence statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A framework that connects computational mechanics and molecular dynamics has been developed and described. As the key parts of the framework, the problem of symbolising molecular trajectory and the associated interrelation between microscopic phase space variables and macroscopic observables of the molecular system are considered. Following Shalizi and Moore, it is shown that causal states, the constituent parts of the main construct of computational mechanics, the e-machine, define areas of the phase space that are optimal in the sense of transferring information from the micro-variables to the macro-observables. We have demonstrated that, based on the decay of their Poincare´ return times, these areas can be divided into two classes that characterise the separation of the phase space into resonant and chaotic areas. The first class is characterised by predominantly short time returns, typical to quasi-periodic or periodic trajectories. This class includes a countable number of areas corresponding to resonances. The second class includes trajectories with chaotic behaviour characterised by the exponential decay of return times in accordance with the Poincare´ theorem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study of annealing behavior of drawn PMMA fibers was performed. Annealing dynamics were investigated under different environmental conditions by fiber longitudinal shrinkage monitoring. The shrinkage process was found to follow a stretched exponential decay function revealing the heterogeneous nature of the underlying molecular dynamics. The complex dependence of the fiber shrinkage on initial degree of molecular alignment in the fiber, annealing time and temperature was investigated and interpreted. Moreover, humidity was shown to have a profound effect on the annealing process, which was not recognized previously. Annealing was also shown to have considerable effect on the fiber mechanical properties associated with the relaxation of molecular alignment in the fiber. The consequences of fiber annealing for the climatic stability of certain polymer optical fiber-based sensors are discussed, emphasizing the importance of fiber controlled pre-annealing with respect to the foreseeable operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spray zone is an important region to control nucleation of granules in a high shear granulator. In this study, a spray zone with cross flow is quantified as a well-mixed compartment in a high shear granulator. Granulation kinetics is quantitatively derived at both particle-scale and spray zone-scale. Two spatial decay rates, DGSDR (droplet-granule spatial decay rate) ζDG and DPSDR (droplet-primary particle spatial decay rate) ζDP, which are functions of volume fraction and diameter of particulate species within the powder bed, are defined to simplify the deduction. It is concluded that in cross flow, explicit analytical results show that the droplet concentration is subject to exponential decay with depth which produces a numerically infinite depth of spray zone in a real penetration process. In a well-mixed spray zone, the depth of the spray zone is 4/(ζDG + ζDP) and π2/3(ζDG + ζDP) in cuboid and cylinder shape, respectively. The first-order droplet-based collision rates of, nucleation rate B0 and rewetting rate RW0 are uncorrelated with the flow pattern and shape of the spray zone. The second-order droplet-based collision rate, nucleated granule-granule collision rate RGG, is correlated with the mixing pattern. Finally, a real formulation case of a high shear granulation process is used to estimate the size of the spray zone. The results show that the spray zone is a thin layer at the powder bed surface. We present, for the first time, the spray zone as a well-mixed compartment. The granulation kinetics of a well-mixed spray zone could be integrated into a Population Balance Model (PBM), particularly to aid development of a distributed model for product quality prediction.