986 resultados para Experimental intragastric infection
Resumo:
The bacterium Rickettsia rickettsii is the etiological agent of an acute, severe disease called Rocky Mountain spotted fever in the United States or Brazilian spotted fever (BSF) in Brazil. In addition to these two countries, the disease has also been reported to affect humans in Mexico, Costa Rica, Panama, Colombia and Argentina. Like humans, dogs are also susceptible to R. rickettsii infection. However, despite the wide distribution of R. rickettsii in the Western Hemisphere, reports of R. rickettsii-induced illness in dogs has been restricted to the United States. The present study evaluated the pathogenicity for dogs of a South American strain of R. rickettsii. Three groups of dogs were evaluated: group 1 (G1) was inoculated ip with R. rickettsii; group 2 (G2) was infested by R. rickettsii-infected ticks; and the control group (G3) was infested by uninfected ticks. During the study, no clinical abnormalities, Rickettsia DNA or R. rickettsii-reactive antibodies were detected in G3. In contrast, all G1 and G2 dogs developed signs of rickettsial infection, i.e., fever, lethargy, anorexia, ocular lesions, thrombocytopenia, anemia and detectable levels of Rickettsia DNA and R. rickettsii-reactive antibodies in their blood. Rickettsemia started 3-8 days after inoculation or tick infestation and lasted for 3-13 days. Our results indicate that a Brazilian strain of R. rickettsii is pathogenic for dogs, suggesting that canine clinical illness due to R. rickettsii has been unreported in Brazil and possibly in the other South American countries where BSF has been reported among humans.
Resumo:
We investigated the activity of linezolid, alone and in combination with rifampin (rifampicin), against a methicillin-resistant Staphylococcus aureus (MRSA) strain in vitro and in a guinea pig model of foreign-body infection. The MIC, minimal bactericidal concentration (MBC) in logarithmic phase, and MBC in stationary growth phase were 2.5, >20, and >20 microg/ml, respectively, for linezolid; 0.01, 0.08, and 2.5 microg/ml, respectively, for rifampin; and 0.16, 0.63, >20 microg/ml, respectively, for levofloxacin. In time-kill studies, bacterial regrowth and the development of rifampin resistance were observed after 24 h with rifampin alone at 1x or 4x the MIC and were prevented by the addition of linezolid. After the administration of single intraperitoneal doses of 25, 50, and 75 mg/kg of body weight, linezolid peak concentrations of 6.8, 12.7, and 18.1 microg/ml, respectively, were achieved in sterile cage fluid at approximately 3 h. The linezolid concentration remained above the MIC of the test organism for 12 h with all doses. Antimicrobial treatments of animals with cage implant infections were given twice daily for 4 days. Linezolid alone at 25, 50, and 75 mg/kg reduced the planktonic bacteria in cage fluid during treatment by 1.2 to 1.7 log(10) CFU/ml; only linezolid at 75 mg/kg prevented bacterial regrowth 5 days after the end of treatment. Linezolid used in combination with rifampin (12.5 mg/kg) was more effective than linezolid used as monotherapy, reducing the planktonic bacteria by >or=3 log(10) CFU (P < 0.05). Efficacy in the eradication of cage-associated infection was achieved only when linezolid was combined with rifampin, with cure rates being between 50% and 60%, whereas the levofloxacin-rifampin combination demonstrated the highest cure rate (91%) against the strain tested. The linezolid-rifampin combination is a treatment option for implant-associated infections caused by quinolone-resistant MRSA.
Resumo:
A cohort initiated with 121 eggs, yielding 105 first instar nymphs (eclosion rate: 86.78%), allowed us to observe the entire life cycle of Triatoma ryckmani under laboratory conditions (24ºC and 62% relative humidity), by feeding them on anesthetized hamsters. It was possible to obtain 62 adults and the cycle from egg to adult took a mean of 359.69 days with a range of 176-529 days (mortality rate of nymphs: 40.95%). Mean life span of adults was of 81 days for females and 148 days for males. The developmental periods of 4th and 5th nymphs were longer than those of the other instars. This suggests that young siblings have a better chance of taking a hemolymph meal from older ones, in order to survive during fasting periods during prolonged absences of vertebrate hosts from natural ecotopes. The stomach contents of 37 insects showed blood from rodents (15 cases), lizards (7 cases), birds (6 cases) and insect hemolymph (7 cases). Out of 10 insects fed by xenodiagnosis on a Trypanosoma cruzi infected mouse, all but one became infected with the parasite.
Resumo:
Protection against Fasciola hepatica in goats immunized with a synthetic recombinant antigen from Schistosoma mansoni fatty acid-binding protein 14 (rSm14) was investigated by assessing worm burdens, serum levels of hepatic enzymes, faecal egg count and hepatic damage, which was evaluated using gross and microscopic morphometric observation. The nature of the local immune response was assessed by examining the distribution of CD2+, CD4+, CD8+ and γ´+ T lymphocytes along with IgG+, IL-4+ and IFN-γ+ cells in the liver and hepatic lymph nodes (HLN). The goats used consisted of group 1 (unimmunized and uninfected), group 2 [infected control - immunized with Quillaia A (Quil A)] and group 3 (immunized with rSm14 in Quil A and infected), each containing seven animals. Immunization with rSm14 in Quil A adjuvant induced a reduction in gross hepatic lesions of 56.6% (p < 0.001) and reduced hepatic and HLN infiltration of CD2+, CD4+, CD8+ and γ´+ T lymphocytes as well as IL-4+ and IFN-γ+ cells (p < 0.05). This is the first report of caprine immunization against F. hepatica using a complete rSm14 molecule derived from S. mansoni. Immunization reduced hepatic damage and local inflammatory infiltration into the liver and HLN. However, considering that Quil A is not the preferential/first choice adjuvant for Sm14 immunization, further studies will be undertaken using the monophosphoryl lipid A-based family of adjuvants during clinical trials to facilitate anti-Fasciolavaccine development.
Resumo:
In America, there are two species of Trypanosoma that can infect humans: Trypanosoma cruzi, which is responsible for Chagas disease and Trypanosoma rangeli, which is not pathogenic. We have developed a model of vaccination in mice with T. rangeli epimastigotes that protects against T. cruzi infection. The goal of this work was to study the pattern of specific immunoglobulins in the peritoneum (the site of infection) and in the sera of mice immunized with T. rangeli before and after challenge with T. cruzi. Additionally, we studied the effects triggered by antigen-antibodies binding and the levels of key cytokines involved in the humoral response, such as IL-4, IL-5 and IL-6. The immunization triggered the production of antibodies reactive with T. cruzi in peritoneal fluid (PF) and in serum, mainly IgG1 and, to a lesser magnitude, IgG2. Only immunized mice developed specific IgG3 antibodies in their peritoneal cavities. Antibodies were able to bind to the surface of the parasites and agglutinate them. Among the cytokines studied, IL-6 was elevated in PF during early infection, with higher levels in non-immunized-infected mice. The results indicate that T. rangeli vaccination against T. cruzi infection triggers a high production of specific IgG isotypes in PF and sera before infection and modulates the levels of IL-6 in PF in the early periods of infection.
Resumo:
Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.
Resumo:
Trypanosoma cruzi infection has a large public health impact in Latin American countries. Although the transmission rates via blood transfusions and insect vectors have declined sharply in the past 20 years due to policies of the Southern Cone countries, a large number of people are still at risk for infection. Currently, no accepted experimental model or descriptions of the clinical signs that occur during the course of acute murine infection are available. The aim of this work was to use non-invasive methods to evaluate the clinical signs of Balb/c mice infected with the Y strain of T. cruzi. The infected mice displayed evident clinical changes beginning in the third week of infection. The mice were evaluated based on physical characteristics, spontaneous activity, exploratory behaviour and physiological alterations. We hope that the results presented in this report provide parameters that complement the effective monitoring of trypanocidal treatment and other interventions used to treat experimental Chagas disease.
Resumo:
Rocio virus (ROCV) is an encephalitic flavivirus endemic to Brazil. Experimental flavivirus infections have previously demonstrated a persistent infection and, in this study, we investigated the persistence of ROCV infection in golden hamsters (Mesocricetus auratus). The hamsters were infected intraperitoneally with 9.8 LD50/0.02 mL of ROCV and later anaesthetised and sacrificed at various time points over a 120-day period to collect of blood, urine and organ samples. The viral titres were quantified by real-time-polymerase chain reaction (qRT-PCR). The specimens were used to infect Vero cells and ROCV antigens in the cells were detected by immunefluorescence assay. The levels of antibodies were determined by the haemagglutination inhibition technique. A histopathological examination was performed on the tissues by staining with haematoxylin-eosin and detecting viral antigens by immunohistochemistry (IHC). ROCV induced a strong immune response and was pathogenic in hamsters through neuroinvasion. ROCV was recovered from Vero cells exposed to samples from the viscera, brain, blood, serum and urine and was detected by qRT-PCR in the brain, liver and blood for three months after infection. ROCV induced histopathological changes and the expression of viral antigens, which were detected by IHC in the liver, kidney, lung and brain up to four months after infection. These findings show that ROCV is pathogenic to golden hamsters and has the capacity to cause persistent infection in animals after intraperitoneal infection.
Resumo:
Toxoplasma gondii causes toxoplasmosis, a worldwide disease. Experimentation with pigs is necessary for the development of new therapeutic approaches to human diseases. BR-1 mini pigs were intramuscularly infected with T. gondii with tachyzoites (RH strain) or orally infected with cysts (ME-49 strain). Haematology and serum biochemistry were analysed and buffy coat cells were inoculated in mice to determine tachyzoite circulation. No alterations were observed in erythrocyte and platelet values; however, band neutrophils increased seven days after infection with ME-49. Serology of the mice inoculated with pig blood leucocytes revealed circulating ME-49 or RH strain tachyzoites in the pigs' peripheral blood at two and seven or nine days post-infection. The tachyzoites were also directly observed in blood smears from the infected pigs outside and inside leucocytes for longer periods. Alanine-aminotransferase was high at days 21 and 32 in the RH infected pigs. After 90 days, the pigs were euthanised and their tissue samples were processed and inoculated into mice. The mice serology revealed the presence of parasites in the hearts, ileums and mesenteric lymph nodes of the pigs. Additionally, cysts in the mice were only observed after pig heart tissue inoculation. The infected pigs presented similar human outcomes with relatively low pathogenicity and the BR-1 mini pig model infected with ME-49 is suitable to monitor experimental toxoplasmosis.
Resumo:
For enterococcal implant-associated infections, the optimal treatment regimen has not been defined. We investigated the activity of daptomycin, vancomycin, and gentamicin (and their combinations) against Enterococcus faecalis in vitro and in a foreign-body infection model. Antimicrobial activity was investigated by time-kill and growth-related heat production studies (microcalorimetry) as well as with a guinea pig model using subcutaneously implanted cages. Infection was established by percutaneous injection of E. faecalis in the cage. Antibiotic treatment for 4 days was started 3 h after infection. Cages were removed 5 days after end of treatment to determine the cure rate. The MIC, the minimal bactericidal concentration (MBC) in the logarithmic phase, and the MBC in the stationary phase were 1.25, 5, and >20 μg/ml for daptomycin, 1, >64, and >64 μg/ml for vancomycin, and 16, 32, and 4 μg/ml for gentamicin, respectively. In vitro, gentamicin at subinhibitory concentrations improved the activity against E. faecalis when combined with daptomycin or vancomycin in the logarithmic and stationary phases. In the animal model, daptomycin cured 25%, vancomycin 17%, and gentamicin 50% of infected cages. In combination with gentamicin, the cure rate for daptomycin increased to 55% and that of vancomycin increased to 33%. In conclusion, daptomycin was more active than vancomycin against adherent E. faecalis, and its activity was further improved by the addition of gentamicin. Despite a short duration of infection (3 h), the cure rates did not exceed 55%, highlighting the difficulty of eradicating E. faecalis from implants already in the early stage of implant-associated infection.
Resumo:
Increasing antimicrobial resistance reduces treatment options for implant-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA). We evaluated the activity of fosfomycin alone and in combination with vancomycin, daptomycin, rifampin, and tigecycline against MRSA (ATCC 43300) in a foreign-body (implantable cage) infection model. The MICs of the individual agents were as follows: fosfomycin, 1 μg/ml; daptomycin, 0.125 μg/ml; vancomycin, 1 μg/ml; rifampin, 0.04 μg/ml; and tigecycline, 0.125 μg/ml. Microcalorimetry showed synergistic activity of fosfomycin and rifampin at subinhibitory concentrations against planktonic and biofilm MRSA. In time-kill curves, fosfomycin exhibited time-dependent activity against MRSA with a reduction of 2.5 log10 CFU/ml at 128 × the MIC. In the animal model, planktonic bacteria in cage fluid were reduced by <1 log10 CFU/ml with fosfomycin and tigecycline, 1.7 log10 with daptomycin, 2.2 log10 with fosfomycin-tigecycline and fosfomycin-vancomycin, 3.8 log10 with fosfomycin-daptomycin, and >6.0 log10 with daptomycin-rifampin and fosfomycin-rifampin. Daptomycin-rifampin cured 67% of cage-associated infections and fosfomycin-rifampin cured 83%, whereas all single drugs (fosfomycin, daptomycin, and tigecycline) and rifampin-free fosfomycin combinations showed no cure of MRSA cage-associated infections. No emergence of fosfomycin resistance was observed in animals; however, a 4-fold increase in fosfomycin MIC (from 2 to 16 μg/ml) occurred in the fosfomycin-vancomycin group. In summary, the highest eradication of MRSA cage-associated infections was achieved with fosfomycin in combination with rifampin (83%). Fosfomycin may be used in combination with rifampin against MRSA implant-associated infections, but it cannot replace rifampin as an antibiofilm agent.
Resumo:
The expression of Staphylococcus aureus adhesins in Lactococcus lactis identified clumping factor A (ClfA) and fibronectin-binding protein A (FnBPA) as critical for valve colonization in rats with experimental endocarditis. This study further analyzed their role in disease evolution. Infected animals were followed for 3 d. ClfA-positive lactococci successfully colonized damaged valves, but were spontaneously eradicated over 48 h. In contrast, FnBPA-positive lactococci progressively increased bacterial titers in vegetations and spleens. At imaging, ClfA-positive lactococci were restricted to the vegetations, whereas FnBPA-positive lactococci also invaded the adjacent endothelium. This reflected the capacity of FnBPA to trigger cell internalization in vitro. Because FnBPA carries both fibrinogen- and fibronectin-binding domains, we tested the role of these functionalities by deleting the fibrinogen-binding domain of FnBPA and supplementing it with the fibrinogen-binding domain of ClfA in cis or in trans. Deletion of the fibrinogen-binding domain of FnBPA did not alter fibronectin binding and cell internalization in vitro. However, it totally abrogated valve infectivity in vivo. This ability was restored in cis by inserting the fibrinogen-binding domain of ClfA into truncated FnBPA, and in trans by coexpressing full-length ClfA and truncated FnBPA on two separate plasmids. Thus, fibrinogen and fibronectin binding could cooperate for S. aureus valve colonization and endothelial invasion in vivo.
Resumo:
Propionibacterium acnes is an important cause of orthopedic-implant-associated infections, for which the optimal treatment has not yet been determined. We investigated the activity of rifampin, alone and in combination, against planktonic and biofilm P. acnes in vitro and in a foreign-body infection model. The MIC and the minimal bactericidal concentration (MBC) were 0.007 and 4 μg/ml for rifampin, 1 and 4 μg/ml for daptomycin, 1 and 8 μg/ml for vancomycin, 1 and 2 μg/ml for levofloxacin, 0.03 and 16 μg/ml for penicillin G, 0.125 and 512 μg/ml for clindamycin, and 0.25 and 32 μg/ml for ceftriaxone. The P. acnes minimal biofilm eradication concentration (MBEC) was 16 μg/ml for rifampin; 32 μg/ml for penicillin G; 64 μg/ml for daptomycin and ceftriaxone; and ≥128 μg/ml for levofloxacin, vancomycin, and clindamycin. In the animal model, implants were infected by injection of 10⁹ CFU P. acnes in cages. Antimicrobial activity on P. acnes was investigated in the cage fluid (planktonic form) and on explanted cages (biofilm form). The cure rates were 4% for daptomycin, 17% for vancomycin, 0% for levofloxacin, and 36% for rifampin. Rifampin cured 63% of the infected cages in combination with daptomycin, 46% with vancomycin, and 25% with levofloxacin. While all tested antimicrobials showed good activity against planktonic P. acnes, for eradication of biofilms, rifampin was needed. In combination with rifampin, daptomycin showed higher cure rates than with vancomycin in this foreign-body infection model.
Resumo:
Enterococcal implant-associated infections are difficult to treat because antibiotics generally lack activity against enterococcal biofilms. We investigated fosfomycin, rifampin, and their combinations against planktonic and adherent Enterococcus faecalis (ATCC 19433) in vitro and in a foreign-body infection model. The MIC/MBClog values were 32/>512 μg/ml for fosfomycin, 4/>64 μg/ml for rifampin, 1/2 μg/ml for ampicillin, 2/>256 μg/ml for linezolid, 16/32 μg/ml for gentamicin, 1/>64 μg/ml for vancomycin, and 1/5 μg/ml for daptomycin. In time-kill studies, fosfomycin was bactericidal at 8× and 16× MIC, but regrowth of resistant strains occurred after 24 h. With the exception of gentamicin, no complete inhibition of growth-related heat production was observed with other antimicrobials on early (3 h) or mature (24 h) biofilms. In the animal model, fosfomycin alone or in combination with daptomycin reduced planktonic counts by ≈4 log10 CFU/ml below the levels before treatment. Fosfomycin cleared planktonic bacteria from 74% of cage fluids (i.e., no growth in aspirated fluid) and eradicated biofilm bacteria from 43% of cages (i.e., no growth from removed cages). In combination with gentamicin, fosfomycin cleared 77% and cured 58% of cages; in combination with vancomycin, fosfomycin cleared 33% and cured 18% of cages; in combination with daptomycin, fosfomycin cleared 75% and cured 17% of cages. Rifampin showed no activity on planktonic or adherent E. faecalis, whereas in combination with daptomycin it cured 17% and with fosfomycin it cured 25% of cages. Emergence of fosfomycin resistance was not observed in vivo. In conclusion, fosfomycin showed activity against planktonic and adherent E. faecalis. Its role against enterococcal biofilms should be further investigated, especially in combination with rifampin and/or daptomycin treatment.