982 resultados para Exhaust-gas


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a compact electric discharge plasma source for controlling NOX emission in diesel engine exhaust. An automobile ignition coil was used to generate the high voltage pulse using flyback topology. This design is aimed at retrofitting the existing catalytic converters with pulse assisted cleaning technique. In this paper we bring out a relative comparison of discharge plasma and plasma-adsorbent process at different gas flow rates. Activated alumina was used as adsorbent. The main emphasis is laid on the development of a compact pulse source from a DC supply for the removal of NOX from the filtered diesel engine exhaust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comprehensive scheme has been developed for the prediction of radiation from engine exhaust and its incidence on an arbitrarily located sensor. Existing codes have been modified for the simulation of flows inside nozzles and jets. A novel view factor computation scheme has been applied for the determination of the radiosities of the discrete panels of a diffuse and gray nozzle surface. The narrowband model has been used to model the radiation from the gas inside the nozzle and the nonhomogeneous jet. The gas radiation from the nozzle inclusive of nozzle surface radiosities have been used as boundary conditions on the jet radiation. Geometric modeling techniques have been developed to identify and isolate nozzle surface panels and gas columns of the nozzle and jet to determine the radiation signals incident on the sensor. The scheme has been validated for intensity and heat flux predictions, and some useful results of practical importance have been generated to establish its viability for infrared signature analysis of jets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports improved performance of discharge plasma in filtered engine exhaust treatment. Our paper deals about the removal of NOX emissions from the diesel exhaust by electric discharge plasma. For the treatment of diesel exhaust a new type of reactor referred to as crossflow dielectric barrier discharge reactor has been used, where the gas flow is perpendicular to the corona electrode. Experiments were conducted at different flow rates ranging from 2 l/min to 10 l/min. The discharge plasma assisted barrier discharge reactor has shown promising results in NOX removal at high flow rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a compact electric discharge plasma source for controlling NOX emission in diesel engine exhaust. Boost converter is used to boost to solar powered battery voltage to 24V, further an automobile ignition coil was used to generate the high voltage pulse using fly-back topology. This design is aimed at retrofitting the existing catalytic converters with pulse assisted cleaning technique. In this paper we bring out a relative comparison of discharge plasma and plasma-adsorbent process at different gas flow rates. Activated alumina was used as adsorbent. The main emphasis is laid on the development of a compact pulse source from 12V battery, which is powered by the solar, for the removal of NOX from the filtered diesel engine exhaust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanosized Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe) has been synthesized using a low temperature sonication method and characterized using XRD, TEM, XPS and H-2-TPR. The potential application of both the solid solutions has been explored as exhaust catalysts by performing CO oxidation. The addition of Si- and Fe-in Ce0.95Ru0.05O2-delta greatly enhanced the reducibility of Ce0.85M0.1Ru0.05O2-delta (M = Si, Fe), as indicated by the H-2-TPR study. The oxygen storage capacity has been used to correlate surface oxygen reactivity to the CO oxidation activity. Both the compounds reversibly release lattice oxygen and exhibit excellent CO oxidation activity with 99% conversion below 200 degrees C. A bifunctional reaction mechanism involving CO oxidation by the extraction of lattice oxygen and rejuvenation of oxide vacancy with gas feed O-2 has been used to correlate experimental data. The performance of both the solid solutions has also been investigated for energy application by performing the water gas shift reaction. The present catalysts are highly active and selective towards the hydrogen production and a lack of methanation activity is an important finding of present study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With ever more stringent NOX emissions, it is necessary to examine removal of nitrogen oxide from diesel engine exhaust. This paper describes the study of NOX reduction from 5.9-kW stationary diesel engine exhaust under nanosecond pulse energization. Two plasma reactors characterized by dielectric barrier discharge has been designed, built, and evaluated. One of the reactor designs include nine numbers of electrodes kept in parallel, and the exhaust was allowed to pass axially, whereas the second reactor consists of nine parallel electrodes and the exhaust was allowed to pass radially. The reactors were individually tested for the treatment of nitrogen oxides for gas flow rate of 2, 5, and 10 L/min. Both the reactors have been individually tested, and results show an appreciable removal of NOX with equal discharge volume. From the results, it was found that both the reactors were an efficient NOX removal. With consumption of only 36 J/L, the reactors had shown a considerable 45% DeNO(X) efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concentration of Nitrogen Oxides (NOx) in engines which use biodiesel as fuel is higher compared to conventional diesel engine exhaust. In this paper, an attempt has been made to treat this exhaust using a combination of High frequency AC (HFAC) plasma and an industrial waste, Red Mud which shows proclivity towards Nitrogen dioxide (NO2) adsorption. The high frequency AC source in combination with the proposed compact double dielectric plasma reactors is relatively more efficient in converting Nitric Oxide (NO) to NO2. It has been shown that the plasma treated gas enhances the activity of red mud as an adsorbent/catalyst and about 60-72% NOx removal efficiency was observed at a specific energy of 250 J/L. The advantage in this method is the cost effectiveness and abundant availability of the waste red mud in the industry. Further, power estimation studies were carried out using Manley's equation for the two reactors employed in the experiment and a close agreement between experimental and predicted powers was observed. (C) 2015 The Authors. Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[ES]Diseño de una instalación de cogeneración basada en un motor de combustible gas natural para una empresa de tratamientos térmicos y superficiales. Para satisfacer las necesidades energéticas de la planta, la potencia eléctrica la suministrará un alternador conectado al motor y, a su vez, la entalpía de los humos de escape del motor se aprovechará para la producción de vapor de agua, necesario para la actividad industrial de la empresa. Por otro lado, el calor que es necesario disipar de dicho motor se recuperará para el calentamiento de agua de red, con la finalidad de limpiar la taladrina de las piezas tratadas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents the results of an investigation of a method of underwater propulsion. The propelling system utilizes the energy of a small mass of expanding gas to accelerate the flow of a large mass of water through an open ended duct of proper shape and dimensions to obtain a resultant thrust. The investigation was limited to making a large number of runs on a hydroduct of arbitrary design, varying between wide limits the water flow and gas flow through the device, and measuring the net thrust caused by the introduction and expansion of the gas.

In comparison with the effective exhaust velocity of about 6,000 feet per second observed in rocket motors, this hydroduct model attained a maximum effective exhaust velocity of more than 27,000 feet per second, using nitrogen gas. Using hydrogen gas, effective exhaust velocities of 146,000 feet per second were obtained. Further investigation should prove this method of propulsion not only to be practical but very efficient.

This investigation was conducted at Project No. 1, Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadena, California.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the synthesis of dimethyl ether (DME) from biomass synthesis gas using a kind of hybrid catalyst consisting of methanol and HZSM-5 zeolite in a fixed-bed reactor in a 100 ton/year pilot plant. The biomass synthesis gas was produced by oxygen-rich gasification of corn core in a two-stage fixed bed. The results showed that CO conversions reached 82.00% and 73.55%, the selectivities for DME were 73.95% and 69.73%, and the space-time yields were 124.28 kg m- 3 h- 1 and 203.80 kg m- 3 h- 1 when gas hourly space velocities were 650 h- 1 and 1200 h- 1, respectively. Deoxidation and tar removal from biomass synthesis gas was critical to the stable operation of the DME synthesis system. Using single-pass synthesis, the H2/CO ratio improved from 0.98-1.17 to 2.12-2.22. The yield of DME would be increased greatly if the exhaust was reused after removal of the CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally the simulation of the thermodynamic aspects of the internal combustion engine has been undertaken using one-dimensional gas-dynamic models to represent the intake and exhaust systems. CFD analysis of engines has been restricted to modelling of in-cylinder flow structures. With the increasing accessibility of CFD software it is now worth considering its use for complete gas-dynamic engine simulation. This paper appraises the accuracy of various CFD models in comparison to a 1D gas-dynamic simulation. All of the models are compared to experimental data acquired on an apparatus that generates a single gas-dynamic pressure wave. The progress of the wave along a constant area pipe and its subsequent reflection from the open pipe end are recorded with a number of high speed pressure transducers. It was found that there was little to choose between the accuracy of the 1D model and the best CFD model. The CFD model did not require experimentally derived loss coefficients to accurately represent the open pipe end; however, it took several hundred times longer to complete its analysis. The best congruency between the CFD models and the experimental data was achieved using the RNG k-e turbulence model. The open end of the pipe was most effectively represented by surrounding it with a relatively small volume of cells connected to the rest of the environment using a pressure boundary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of one-dimensional simulation codes within engine modelling applications has proved to be a useful tool in evaluating unsteady gas flow through elements in the exhaust system. This paper reports on an experimental and theoretical investigation into the behaviour of unsteady gas flow through catalyst substrate elements. A one-dimensional (1-D) catalyst model has been incorporated into a 1-D simulation code to predict this behaviour.

Experimental data was acquired using a ‘single pulse’ test rig. Substrate samples were tested under ambient conditions in order to investigate a range of regimes experienced by the catalyst during operation. This allowed reflection and transmission characteristics to be quantified in relation to both geometric and physical properties of substrate elements. Correlation between measured and predicted results is demonstrably good and the model provides an effective analysis tool for evaluating unsteady gas flow through different catalytic converter designs.