900 resultados para Evolutionary trees
Resumo:
Trees are capable of portraying the semi-structured data which is common in web domain. Finding similarities between trees is mandatory for several applications that deal with semi-structured data. Existing similarity methods examine a pair of trees by comparing through nodes and paths of two trees, and find the similarity between them. However, these methods provide unfavorable results for unordered tree data and result in yielding NP-hard or MAX-SNP hard complexity. In this paper, we present a novel method that encodes a tree with an optimal traversing approach first, and then, utilizes it to model the tree with its equivalent matrix representation for finding similarity between unordered trees efficiently. Empirical analysis shows that the proposed method is able to achieve high accuracy even on the large data sets.
Resumo:
Between the 1890s and 1920s street trees became a more prominent feature in streetscapes across New South Wales, Australia. The Sydney Botanic Gardens, with their extensive nursery system, were responsible for supplying seedlings to councils and municipalities for use as street trees. As such, this institution was a primary mover of what a street tree should be, how they should be used and what plants were best suited to this particular use in urban environments. This paper analyses the nurturing of this use of street trees by the Sydney Botanic Gardens and the Director Joseph Maiden. This institution was a place that moved not just stock and seedlings, but ideas about how nature's inclusion into urban environments had the capacity to influence and enhance the cultivation of civilised citizens. This was affected through access to transnational resources available to the Sydney Botanic Gardens.
Resumo:
This research looked at using the metaphor of biological evolution as a way of solving architectural design problems. Drawing from fields such as language grammars, algorithms and cellular biology, this thesis looked at ways of encoding design information for processing. The aim of this work is to help in the building of software that support the architectural design process and allow designers to examine more variations.
Resumo:
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the K-means algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley’s Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.
Resumo:
This paper presents a new hybrid evolutionary algorithm based on Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for daily Volt/Var control in distribution system including Distributed Generators (DGs). Due to the small X/R ratio and radial configuration of distribution systems, DGs have much impact on this problem. Since DGs are independent power producers or private ownership, a price based methodology is proposed as a proper signal to encourage owners of DGs in active power generation. Generally, the daily Volt/Var control is a nonlinear optimization problem. Therefore, an efficient hybrid evolutionary method based on Particle Swarm Optimization and Ant Colony Optimization (ACO), called HPSO, is proposed to determine the active power values of DGs, reactive power values of capacitors and tap positions of transformers for the next day. The feasibility of the proposed algorithm is demonstrated and compared with methods based on the original PSO, ACO and GA algorithms on IEEE 34-bus distribution feeder.
Resumo:
This paper presents an efficient hybrid evolutionary optimization algorithm based on combining Ant Colony Optimization (ACO) and Simulated Annealing (SA), called ACO-SA, for distribution feeder reconfiguration (DFR) considering Distributed Generators (DGs). Due to private ownership of DGs, a cost based compensation method is used to encourage DGs in active and reactive power generation. The objective function is summation of electrical energy generated by DGs and substation bus (main bus) in the next day. The approach is tested on a real distribution feeder. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving DFR problem.
Resumo:
This paper deals with an efficient hybrid evolutionary optimization algorithm in accordance with combining the ant colony optimization (ACO) and the simulated annealing (SA), so called ACO-SA. The distribution feeder reconfiguration (DFR) is known as one of the most important control schemes in the distribution networks, which can be affected by distributed generations (DGs) for the multi-objective DFR. In such a case, DGs is used to minimize the real power loss, the deviation of nodes voltage and the number of switching operations. The approach is carried out on a real distribution feeder, where the simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for solving the DFR problem.
Resumo:
This paper is interested in the way in which the heritage of another place, time, and culture is repurposed for popular consumption in an experience economy, as well as the way in which the visitors experience their own past and the past of others. We trace the processes of engagement, education and nostalgia that occur when the European heritage is presented in a postcolonial context and an Australian environment. The information presented includes the results of qualitative and quantitative research conducted at the Abbey Museum over the December-Jan. period of 2012-13.
Resumo:
The standard approach to industrial economics starts with the industry’s basic conditions, then runs through the structure–conduct–performance paradigm of industrial organization, and finally considers government regulation and policy. Most creative industries segments have been studied in this way, for example in Albarran (2002) and Caves (2000). These approaches use standard economic analysis to explain the particular properties and characteristics of a specific industrial sector. The overview presented here is different again. It focuses on the creative industries and examines their economic effect, specifically their contribution to economic evolu -tion. This is an evolutionary systems approach to industrial analysis, where we seek to understand how a sector fits into a broader system of production, consumption, technology, trade and institutions. The evolutionary approach focuses on innovation, economic growth and endogenous transformation. So, rather than using economics to explain static or industrial-organization features of the creative industries, we are using an open systems view of the creative industries to explain dynamic ‘Schumpeterian’ features of the broader economy. The creative industries are drivers of economic transformation through their role in the origination of new ideas, in consumer adoption, and in facilitating the institutional embedding of new ideas into the economic order. This is not a novel idea, as economists have long understood that particular activities are drivers of economic growth and development, for example research and development, and also that particular sectors are instrumental to this process, for example high-technology sectors. What is new is the argument that cultural and creative sectors are also a key part of this process of economic evolution. We will review the case for that claim, and outline purported mechanisms. We will also consider why policy settings in the creative industries should be more in line with innovation and growth policy than with industry policy.
Resumo:
Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].
Resumo:
This thesis is a study of new design methods for allowing evolutionary algorithms to be more effectively utilised in aerospace optimisation applications where computation needs are high and computation platform space may be restrictive. It examines the applicability of special hardware computational platforms known as field programmable gate arrays and shows that with the right implementation methods they can offer significant benefits. This research is a step forward towards the advancement of efficient and highly automated aircraft systems for meeting compact physical constraints in aerospace platforms and providing effective performance speedups over traditional methods.
Resumo:
Even when no baseline data are available, the impacts of 150 years of livestock grazing on natural grasslands can be assessed using a combined approach of grazing manipulation and regional-scale assessment of the flora. Here, we demonstrate the efficacy of this method across 18 sites in the semidesert Mitchell grasslands of northeastern Australia. Fifteen-year-old exclosures (ungrazed and macropod grazed) revealed that the dominant perennial grasses in the genus Astrebla do not respond negatively to grazing disturbance typical of commercial pastoralism. Neutral, positive, intermediate, and negative responses to grazing disturbance were recorded amongst plant species with no single life-form group associated with any response type. Only one exotic species, Cenchrus ciliaris, was recorded at low frequency. The strongest negative response was from a native annual grass, Chionachne hubbardiana, an example of a species that is highly sensitive to grazing disturbance. Herbarium records revealed only scant evidence that species with a negative response to grazing have declined through the period of commercial pastoralism. A regional analysis identified 14 from a total of 433 plant species in the regional flora that may be rare and potentially threatened by grazing disturbance. However, a targeted survey precluded grazing as a cause of decline for seven of these based on low palatability and positive responses to grazing and other disturbance. Our findings suggest that livestock grazing of semidesert grasslands with a short evolutionary history of ungulate grazing has altered plant composition, but has not caused declines in the dominant perennial grasses or in species richness as predicted by the preceding literature. The biggest impact of commercial pastoralism is the spread of woody leguminous trees that can transform grassland to thorny shrubland. The conservation of plant biodiversity is largely compatible with commercial pastoralism provided these woody weeds are controlled, but reserves strategically positioned within water remote areas are necessary to protect grazing-sensitive species. This study demonstrates that a combination of experimental studies and regional surveys can be used to understand anthropogenic impacts on natural ecosystems where reference habitat is not available.
Resumo:
These lecture notes describe the use and implementation of a framework in which mathematical as well as engineering optimisation problems can be analysed. The foundations of the framework and algorithms described -Hierarchical Asynchronous Parallel Evolutionary Algorithms (HAPEAs) - lie upon traditional evolution strategies and incorporate the concepts of a multi-objective optimisation, hierarchical topology, asynchronous evaluation of candidate solutions , parallel computing and game strategies. In a step by step approach, the numerical implementation of EAs and HAPEAs for solving multi criteria optimisation problems is conducted providing the reader with the knowledge to reproduce these hand on training in his – her- academic or industrial environment.
Resumo:
These lecture notes highlight some of the recent applications of multi-objective and multidisciplinary design optimisation in aeronautical design using the framework and methodology described in References 8, 23, 24 and in Part 1 and 2 of the notes. A summary of the methodology is described and the treatment of uncertainties in flight conditions parameters by the HAPEAs software and game strategies is introduced. Several test cases dealing with detailed design and computed with the software are presented and results discussed in section 4 of these notes.