570 resultados para Eucalypt, Parasitoid, Paropsine
Resumo:
The parasitoid Chelonus inanitus (Braconidae, Hymenoptera) oviposits into eggs of Spodoptera littoralis (Noctuidae, Lepidoptera) and, along with the egg, also injects polydnaviruses and venom, which are prerequisites for successful parasitoid development. The parasitoid larva develops within the embryonic and larval stages of the host, which enters metamorphosis precociously and arrests development in the prepupal stage. Polydnaviruses are responsible for the developmental arrest and interfere with the host's endocrine system in the last larval instar. Polydnaviruses have a segmented genome and are transmitted as a provirus integrated in the wasp's genome. Virions are only formed in female wasps and no virus replication is seen in the parasitized host. Here it is shown that very small amounts of viral transcripts were found in parasitized eggs and early larval instars of S. littoralis. Later on, transcript quantities increased and were highest in the late last larval instar for two of the three viral segments tested and in the penultimate to early last larval instar for the third segment. These are the first data on the occurrence of viral transcripts in the host of an egg-larval parasitoid and they are different from data reported for hosts of larval parasitoids, where transcript levels are already high shortly after parasitization. The analysis of three open reading frames by RT-PCR revealed viral transcripts in parasitized S. littoralis and in female pupae of C. inanitus, indicating the absence of host specificity. For one open reading frame, transcripts were also seen in male pupae, suggesting transcription from integrated viral DNA.
Resumo:
The ant Oecophylla longinoda Latreille forms a trophobiotic relationship with the invasive mealybug Rastrococus iceryoides Green and promotes the latter's infestations to unacceptable levels in the presence of their natural enemies. In this regard, the antagonistic interactions between the ant and the parasitoid Anagyrus pseudococci Girault were assessed under laboratory conditions. The percentage of parasitism of R. iceryoides by A. pseudococci was significantly higher on "ant-excluded" treatments (86.6% ± 1.27%) compared to "ant-tended" treatments (51.4% ± 4.13%). The low female-biased sex-ratio observed in the "ant-tended" treatment can be attributed to ants' interference during the oviposition phase, which disrupted parasitoids' ability to fertilize eggs. The mean foraging time, host handling time and number of successful oviposition in "ant-excluded" treatment were significantly higher compared to "ant-tended" treatments. When ant workers were allowed access to sterilized sand grains, mummified and unmummified R. iceryoides, they selectively removed the mummified mealybugs, indicating that they recognized the mummies as potential foods (1.2 ± 0.46 to 7.8 ± 1.17 mummies at 10 min intervals for 2 h). Percentage emergence from mummified R. iceryoides removed by the ants was significantly lower compared to emergence from mummies not exposed to ants. Although, host seeking parasitoids frequently evaded attacks, some were killed by the foraging ant workers (2.0 ± 0.38 to 6.0 ± 0.88 at 10 min intervals for 2 h). These results suggest for the first time that the presence of O. longinoda has a detrimental effect on the abundance, reproductive success and possibly oviposition strategy of female parasitoids, which might be a delimiting factor in field conditions if both natural enemies are to be recommended for use within the same agro-ecosystem.
Resumo:
Three MADS-box genes were identified from a cDNA library derived from young flowers of Eucalyptus grandis W. Hill ex Maiden. The three egm genes are single-copy genes and are expressed almost exclusively in flowers. The egm1 and egm3 genes shared strongest homology with other plant MADS-box genes, which mediate between the floral meristem and the organ-identity genes. The egm3 gene was also expressed strongly in the receptacle or floral tube, which surrounds the carpels in the eucalypt flower and bears the sepals, petals, and numerous stamens. There appeared to be a group of genes in eucalypts with strong homology with the 3′ region of the egm1 gene. The egm2 gene was expressed in eucalypt petals and stamens and was most homologous to MADS-box genes, which belong to the globosa group of genes, which regulate organogenesis of the second and third floral whorls. The possible role of these three genes in eucalypt floral development is discussed.
Resumo:
NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed.
Resumo:
The encyrtid Coccidoxenoides perminutus is a widely distributed parasitoid of citrus mealybug (Planococcus citri). Worldwide, it has been implicated in successful biocontrol in only a few widely separated localities. C perminutus contributes little to control P. citri in field situations in south-east Queensland, Australia, but invades insectary cultures and reduces mealybug populations considerably under these controlled conditions. This discrepancy between poor field performance and good performance under controlled conditions was investigated to establish whether climatic factors inhibit the field performance of this species in the biological control of P. citri. Subsequent laboratory examination of the influence of varied humidities and temperatures on the activity levels and survival of C perminutus revealed a low tolerance for high saturation deficits (i.e., low % RH at high T degreesC) with reduced reproductive output. The influence of different food sources on adult survival and reproduction was also quantified, to establish if the adverse effects of climate could be overcome by supplementing adult diet. Neither honeydew from their mealybug hosts nor nectar from Alphitonia flowers significantly enhanced parasitoid survival. A subsequent test of five nectar species revealed a significant difference in their influence on C. perminutus survival and reproduction, with only Alpinia zerumbet proving to be as suitable as honey. The floral species that proved suitable in the laboratory need to be checked for their attractiveness to C perminutus in the field and for their ability to enhance the survival and reproductive output of parasitoids. This information suggests that the prevailing dry conditions in south-east Queensland citrus-growing areas apparently impede successful biological control of P. citri by C perminutus, but possibilities are available for habitat manipulation (by providing suitable nectar sources for adult parasitoids) to conserve and enhance C perminutus activity in the field. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Interactions between the immature stages of Diadegma semiclausum, an endolarval parasitoid of Plutella xylostella, and the fungal entomopathogen Beauveria bassiana were investigated in the laboratory. Detrimental effects of B. bassiana on D. semiclausum cocoon production and adult parasitoid emergence increased with increasing pathogen concentration and some parasitoid larvae became infected by B. bassiana within hosts. The negative impact of B. bassiana on D. semiclausum cocoon production decreased as temporal separation between parasitism and pathogen exposure increased. Adult parasitoid emergence was significantly compromised by the highest rates of B. bassiana tested even when exposure of host larvae to the pathogen was delayed until one day before predicted parasitoid cocoon formation. Parasitoid pupae were infected by the pathogen in all B. bassiana treatments which did not preclude their development. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Properties relevant to the ovipositional activity and lifetime productivity of Coccidoxenoides peregrinus (Timberlake) were assessed in the laboratory, to determine the potential of this species as a biocontrol agent against the citrus mealybug, Planococcus citri (Risso). In general, this species has not performed well in orchards, except for a few localities on different continents. The mode of reproduction of C peregrinus is almost entirely thelytokous, with males produced sporadically and at low frequency. The females have both pro-ovigenic and synovigenic traits, which raises questions of the utility of this distinction. The females have a high reproductive potential with 10-20 eggs per day available within the first two days (after a short (12 h) pre-oviposition period), and 80-150 eggs per day thereafter until death at about eight days. Mean lifetime fecundity was 239.2 +/- 34.3 eggs. C peregrinus oviposits across a range of P. citri instars, but productivity relies predominantly on second instar hosts. Second stage (N2) hosts received most eggs in choice (about 52%) and no-choice (about 50%) tests. Most eggs deposited into N2 hosts (82%) reached adult stage whereas only a few of those deposited into N1 and N3 (about 5% each) developed successfully. The haemolymph of parasitised reproductive mealybugs contained granular structures and no parasitoid eggs were found 24 h after exposure to ovipositing wasps. Also, no wasps emerged from parasitised adult hosts that were kept alive. Parasitoid eggs deposited into adult hosts were presumed encapsulated and destroyed, as control mealybugs (not exposed to female wasps) had no granular structures in their haemolymph. Wasps exposed to an abundance of hosts soon started ovipositing, but only for a relatively short time each day (about 2.5 h out of a 7 h exposure). They stopped ovipositing despite eggs judged to be mature in their ovaries. The reproductive output of C peregrinus is discussed in relation to the ecological factors that could influence this output, and the implications for biocontrol are discussed. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
During oviposition, the parasitoid wasp Cotesia congregata injects polydnavirus, venom, and parasitoid eggs into larvae of its lepidopteran host.. the tobacco hornworm, Manduca sexta. Polydnaviruses (PDVs) suppress the immune system of the host and allow the juvenile parasitoids to develop without being encapsulated by host hemocytes mobilized by the immune system. Previous work identified a gene in the Cotesia rubecula PDV (CrV1) that is responsible for depolymerization of actin in hemocytes of the host Pieris rapae during a narrow temporal window from 4 to 8 h post-parasitization. Its expression appears temporally correlated with hemocyte dysfunction. After this time, the hemocytes recover, and encapsulation is then inhibited by other mechanism(s). In contrast, in parasitized tobacco hornworm larvae this type of inactivation in hemocytes of parasitized M. sexta larvae leads to irreversible cellular disruption. We have characterized the temporal pattern of expression of the CrV1-homolog from the C. congregata PDV in host fat body and hemocytes using Northern blots, and localized the protein in host hemocytes with polyclonal antibodies to CrV1 protein produced in P. rapae in response to expression of the CrV1 protein. Host hemocytes stained with FITC-labeled phalloidin, which binds to filamentous actin, were used to observe hemocyte disruption in parasitized and virus-injected hosts and a comparison was made to hemocytes of nonparasitized control larvae. At 24 h post-parasitization host hemocytes were significantly altered compared to those of nonparasitized larvae. Hemocytes front newly parasitized hosts displayed blebbing, inhibition of spreading and adhesion, and overall cell disruption. A CrV1-homolog gene product was localized in host hemocytes using polyclonal CrV1 antibodies, suggesting that CrV1-like gene products of C. congregata's bracovirus are responsible for the impaired immune response of the host. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Coccidoxenoides perminutus achieves only low levels of parasitism of its host Planococcus citri in southeast Queensland citrus. Two possible causes were investigated. Adult survival under natural conditions was assessed to determine whether providing adult food sources could enhance survival. Behavioural changes of hosts, induced by C perminutus parasitism, was also investigated to establish if parasitised P. citri move from their feeding site to seek protected shelters some distance away and are thus not accounted for in field assessments of parasitism rates. Unparasitised mealybugs placed in the field for two periods were retrieved before the effects of parasitism were manifested and parasitism rates were still low (0.3% at 5 days and 1.2% at 10 days). Levels of locomotion of P. citri exposed to C perminutus were compared with those of unexposed ones. Parasitised mealybugs, regardless of instar, undergo behavioural changes. In comparison to unparasitised controls, the mealybugs become highly active 7-14 days after exposure to wasps. All parasitised mealybugs undergo physical changes, their body becomes cylindrical, their legs go so rigid that the mealybugs become immobile, and this signifies the typical mummy appearance. All mealybugs that became mummies eventually fell from the host lemon fruit because of impaired locomotion and were caught on sticky traps that had been placed beneath the lemons. Consequently, their final site of mummification was not established. C perminutus adults provided with nectar or honey survived longer (about 5 days) in the field than those without food (about a day). Nectar from two plant species, Alpinia zerumbet and Datura candida, proved to be good sources of food for the adult wasps, and were comparable in quality to honey. The low level of parasitism achieved by C perminutus in southeast Queensland citrus thus appears to be a consequence of the short adult life and the negative effects of a harsh environment. Provision of a suitable food source (e.g., nectar) may well enhance levels of parasitism in the field. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
An artificial diet incorporating insect cells originally developed for Trichogramma australicum Girault (Hymenoptera: Tricho-grammatidae) was successfully used to rear Trichogramm pretiosum Riley (Hymenoptera: Trichogrammatidae). To refine the diet, individual components were removed. Chicken egg yolk and the insect cells were identified as the most important components for T. pretiosum development. Their removal resulted in few pupae and no adults. Removal of Grace's insect medium, a common component of artificial diets, was found to markedly improve the development of T pretiosum, producing 60% larva to pupa transition and 19% pupa to adult transition. There was no significant difference in T pretiosum development on diets in which milk powder, malt powder or infant formula were interchanged, despite differences in nutrient composition. The use of yeast extract resulted in significantly higher survival to the adult stage when compared with yeast hydrolysate enzymatic and a combination of yeast extract and yeast hydrolysate enzymatic. Comparison of four antimicrobial agents showed the antibacterial agent Gentamycin and the antifungal agent Nystatin had the least detrimental effect on T pretiosum development. The use of insect cell line diets has the potential to simplify artificial diet production and significantly reduce T pretiosum production costs in Australia compared to diets using insect hemolymph or the use of natural or factitious hosts. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Shoot biomass and lignotuber size of seedlings of three eucalypt species, Eucalyptus acmenoides Schauer, E. siderophloia Benth. and Corymbia variegata [syn. E. maculata (F. Muell.)K. D. Hill and L. A. S. Johnson], were measured for glasshouse-grown seedlings established under two water and nutrient regimes. Seedlings were subjected to shoot removal (clipping) at ages from 9 to 19 weeks, and transferred to the high water treatment for a further 8 weeks to assess shoot emergence from lignotubers. Seedling shoot biomass was greater in both the high than the low nutrient and water treatments, but lignotuber diameter was not affected significantly. C. variegata seedlings had the largest lignotuber diameters, followed by E. siderophloia and E. acmenoides, respectively. Although growth of shoots was influenced by nutrient availability, results suggest that species differences in the growth of lignotubers was less affected. It is suggested that lignotuber growth was strongly influenced by genotype. More than 70% of C. variegata seedlings clipped at 9 weeks sprouted, compared with only 5 and 10% of seedlings of E. siderophloia and E. acmenoides, respectively. All C. variegata seedlings sprouted after being clipped at 19 weeks, but < 80% of E. siderophloia and < 60% of E. acmenoides sprouted when clipped at the same age. It was concluded that seedlings forming part of the regeneration stratum in dry sclerophyll forests need to be protected from damage for at least 4 months (for C. variegata) or at least 6 months (for E. siderophloia and E. acmenoides) if they are to survive by sprouting from lignotubers.
Resumo:
The response of generalist egg parasitoids to alternative natural hosts that are present simultaneously is not well known. We investigated the behavior of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) in relation to two field hosts Helicoverpa armigera Hubner and Spodoptera litura Fabricius, in choice and no choice tests. We quantified the effects of natal host species and post-emergence adult age on the oviposition preference of the parasitoids. H. armigera eggs were consistently preferred over S. litura eggs, regardless of the natal host and adult age. When only S. litura eggs were available as hosts, they were parasitized at statistically similar rates to H. armigera eggs (average of 17 +/- 2.7 vs. 13 +/- 3.0, H. armigera to S. litura). The adult lifespan and lifetime fecundity of T. pretiosum were variable but were affected by natal host species and/or host species to which they were exposed. Mean lifespan and fecundity of parasitoids that had developed in H. armigera eggs and were exposed to H. armigera eggs for oviposition were 13.9 +/- 1.8 days and 98.7 +/- 11.0 adult offspring. By contrast, those that developed in S. litura eggs and were exposed to S. litura eggs for oviposition lived for 7 +/- 0.9 days and produced 53.8 +/- 8.0 adult offspring. The ovigeny index (OI) was significantly lower in the parasitoids exposed to H. armigera eggs than in those exposed to S. litura eggs, regardless of the natal host, indicating that H. armigera eggs sustain the adult parasitoids better than S. litura eggs. These results are used to predict parasitoid behavior in the field when both hosts are available. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Fires are integral to the healthy functioning of most ecosystems and are often poorly understood in policy and management, however, the relationship between floristic composition and habitat structure is intrinsically linked, particularly after fire. The aim of this study was to test whether the variability of habitat structure or floristic composition and abundance in forests at a regional scale can be explained in terms of fire frequency using historical data and experimental prescribed burns. We tested this hypothesis in open eucalypt forests of Fraser Island off the east coast of Australia. Fraser Island dunes show progressive stages in plant succession as access to nutrients decreases across the Island. We found that fire frequency was not a good predictor of floristic composition or abundance across dune systems; rather, its affects were dune specific. In contrast, habitat structure was strongly influenced by fire frequency, independent of dune system. A dense understorey occurred in frequently burnt areas, whereas infrequently burnt areas had a more even distribution of plant heights. Plant communities returned to pre-burn levels of composition and abundances within 6 months of a fire and frequently burnt areas were dominated by early successional species of plant. These ecosystems were characterized by low diversity and frequently burnt areas on the east coast were dominated by Pteridium. Greater midstorey canopy cover in low frequency areas reduces light penetration and allows other species to compete more effectively with Pteridium. Our results strongly indicate that frequent fires on the Island have resulted in a decrease in relative diversity through dominance of several species. Prescribed fire represents a powerful management tool to shape habitat structure and complexity of Fraser Island forests.