931 resultados para Error estimator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimal behavior relies on flexible adaptation to environmental requirements, notably based on the detection of errors. The impact of error detection on subsequent behavior typically manifests as a slowing down of RTs following errors. Precisely how errors impact the processing of subsequent stimuli and in turn shape behavior remains unresolved. To address these questions, we used an auditory spatial go/no-go task where continual feedback informed participants of whether they were too slow. We contrasted auditory-evoked potentials to left-lateralized go and right no-go stimuli as a function of performance on the preceding go stimuli, generating a 2 × 2 design with "preceding performance" (fast hit [FH], slow hit [SH]) and stimulus type (go, no-go) as within-subject factors. SH trials yielded SH trials on the following trials more often than did FHs, supporting our assumption that SHs engaged effects similar to errors. Electrophysiologically, auditory-evoked potentials modulated topographically as a function of preceding performance 80-110 msec poststimulus onset and then as a function of stimulus type at 110-140 msec, indicative of changes in the underlying brain networks. Source estimations revealed a stronger activity of prefrontal regions to stimuli after successful than error trials, followed by a stronger response of parietal areas to the no-go than go stimuli. We interpret these results in terms of a shift from a fast automatic to a slow controlled form of inhibitory control induced by the detection of errors, manifesting during low-level integration of task-relevant features of subsequent stimuli, which in turn influences response speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recientemente, ha aumentado mucho el interés por la aplicación de los modelos de memoria larga a variables económicas, sobre todo los modelos ARFIMA. Sin duda , el método más usado para la estimación de estos modelos en el ámbito del análisis económico es el propuesto por Geweke y Portero-Hudak (GPH) aun cuando en trabajos recientes se ha demostrado que, en ciertos casos, este estimador presenta un sesgo muy importante. De ahí que, se propone una extensión de este estimador a partir del modelo exponencial propuesto por Bloomfield, y que permite corregir este sesgo.A continuación, se analiza y compara el comportamiento de ambos estimadores en muestras no muy grandes y se comprueba como el estimador propuesto presenta un error cuadrático medio menor que el estimador GPH

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recientemente, ha aumentado mucho el interés por la aplicación de los modelos de memoria larga a variables económicas, sobre todo los modelos ARFIMA. Sin duda , el método más usado para la estimación de estos modelos en el ámbito del análisis económico es el propuesto por Geweke y Portero-Hudak (GPH) aun cuando en trabajos recientes se ha demostrado que, en ciertos casos, este estimador presenta un sesgo muy importante. De ahí que, se propone una extensión de este estimador a partir del modelo exponencial propuesto por Bloomfield, y que permite corregir este sesgo.A continuación, se analiza y compara el comportamiento de ambos estimadores en muestras no muy grandes y se comprueba como el estimador propuesto presenta un error cuadrático medio menor que el estimador GPH

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In groundwater applications, Monte Carlo methods are employed to model the uncertainty on geological parameters. However, their brute-force application becomes computationally prohibitive for highly detailed geological descriptions, complex physical processes, and a large number of realizations. The Distance Kernel Method (DKM) overcomes this issue by clustering the realizations in a multidimensional space based on the flow responses obtained by means of an approximate (computationally cheaper) model; then, the uncertainty is estimated from the exact responses that are computed only for one representative realization per cluster (the medoid). Usually, DKM is employed to decrease the size of the sample of realizations that are considered to estimate the uncertainty. We propose to use the information from the approximate responses for uncertainty quantification. The subset of exact solutions provided by DKM is then employed to construct an error model and correct the potential bias of the approximate model. Two error models are devised that both employ the difference between approximate and exact medoid solutions, but differ in the way medoid errors are interpolated to correct the whole set of realizations. The Local Error Model rests upon the clustering defined by DKM and can be seen as a natural way to account for intra-cluster variability; the Global Error Model employs a linear interpolation of all medoid errors regardless of the cluster to which the single realization belongs. These error models are evaluated for an idealized pollution problem in which the uncertainty of the breakthrough curve needs to be estimated. For this numerical test case, we demonstrate that the error models improve the uncertainty quantification provided by the DKM algorithm and are effective in correcting the bias of the estimate computed solely from the MsFV results. The framework presented here is not specific to the methods considered and can be applied to other combinations of approximate models and techniques to select a subset of realizations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a heuristic method for learning error correcting output codes matrices based on a hierarchical partition of the class space that maximizes a discriminative criterion. To achieve this goal, the optimal codeword separation is sacrificed in favor of a maximum class discrimination in the partitions. The creation of the hierarchical partition set is performed using a binary tree. As a result, a compact matrix with high discrimination power is obtained. Our method is validated using the UCI database and applied to a real problem, the classification of traffic sign images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore, nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generat ed according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Podeu consultar el document complet de la "XVI Setmana de Cinema Formatiu" a: http://hdl.handle.net/2445/22523

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo, continuando la línea investigadora acerca de las nociones derazón, conciencia y subjetividad en Descartes, tal como se ha defendido en otros artículos ya publicados, aporta un nuevo argumento a una línea de trabajo previamente iniciada, poniendo de relieve que el problema gnoseológico del error viene condicionado por la misma noción cartesiana de racionalidad, y que ésta dista mucho de lo que tradicionalmente se ha entendido como una racionalidad abstracta y formal, libre de los imperativos humanos. Por otro lado, y a la inversa, también se intenta mostrar como el hecho del error contribuye, cartesianamente hablando, a definir un modelo de racionalidad profundamentehumanizada. El artículo, tras una introducción, se propone analizar las relaciones entre los conceptos básicos de racionalidad, dogma, y naturaleza, lo que permitirá a continuación dejar constancia de la copertenencia entre racionalidad y error, para acabar viendo como la libertad humana es la vez, y para ambos, su fundamento último.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducción. El concepto de comorbilidad en trastornos del neurodesarrollo como el autismo resulta, en ocasiones, ambiguo. La coocurrencia entre ansiedad y autismo es clínicamente signifi cativa; sin embargo, no siempre es fácil diferenciar si se trata de una comorbilidad"real", donde las dos condiciones comórbidas son fenotípica y etiológicamente idénticas a lo que supondría dicha ansiedad en personas con un desarrollo neurotípico; si se trata de una ansiedad fenotípicamente alterada por los procesos patogénicos de los trastornos del espectro autista, resultando en una variante específica de éstos, o si partimos de una comorbilidad falsa derivada de diagnósticos diferenciales poco exactos. Desarrollo. El artículo plantea dos hipótesis explicativas de dicha coocurrencia, que se retroalimentan entre sí y que no dejan de ser una refl exión en voz alta partiendo de las evidencias científi cas con las que contamos. La primera es la hipótesis del"error social", y considera que el desajuste en el comportamiento social de las personas con autismofruto de alteraciones en los procesos de cognición social contribuye a exacerbar la ansiedad en el autismo. La segunda hipótesis, la de la carga alostática, defi ende que la ansiedad es la respuesta a un estrés crónico, al desgaste o agotamiento que produce la hiperactivación de ciertas estructuras del sistema límbico. Conclusiones. Las manifestaciones prototípicas de la ansiedad presentes en la persona con autismo no siempre se relacionan con las mismas variables biopsicosociales evidenciadas en personas sin autismo. Las evidencias apuntan a respuestas hiperreactivas de huida o lucha (hipervigilancia) cuando la persona se encuentra fuera de su zona de confort, y apoyan la hipótesis del"error social" y de la descompensación del mecanismo de alostasis que permite afrontar el estrés.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When researchers introduce a new test they have to demonstrate that it is valid, using unbiased designs and suitable statistical procedures. In this article we use Monte Carlo analyses to highlight how incorrect statistical procedures (i.e., stepwise regression, extreme scores analyses) or ignoring regression assumptions (e.g., heteroscedasticity) contribute to wrong validity estimates. Beyond these demonstrations, and as an example, we re-examined the results reported by Warwick, Nettelbeck, and Ward (2010) concerning the validity of the Ability Emotional Intelligence Measure (AEIM). Warwick et al. used the wrong statistical procedures to conclude that the AEIM was incrementally valid beyond intelligence and personality traits in predicting various outcomes. In our re-analysis, we found that the reliability-corrected multiple correlation of their measures with personality and intelligence was up to .69. Using robust statistical procedures and appropriate controls, we also found that the AEIM did not predict incremental variance in GPA, stress, loneliness, or well-being, demonstrating the importance for testing validity instead of looking for it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is studied. The performance of the ten lag-one autocorrelation estimators is compared in terms of Mean Square Error (combining bias and variance) using data series generated by Monte Carlo simulation. The results show that there is not a single optimal estimator for all conditions, suggesting that the estimator ought to be chosen according to sample size and to the information available of the possible direction of the serial dependence. Additionally, the probability of labelling an actually existing autocorrelation as statistically significant is explored using Monte Carlo sampling. The power estimates obtained are quite similar among the tests associated with the different estimators. These estimates evidence the small probability of detecting autocorrelation in series with less than 20 measurement times.