951 resultados para Error de identificación


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a current error space vector (CESV) based hysteresis controller for a 12-sided polygonal voltage space vector inverter fed induction motor (IM) drive is proposed, for the first time. An open-end winding configuration is used for the induction motor. The proposed controller uses parabolic boundary with generalized vector selection logic for all sectors. The drive scheme is first studied with a space vector based PWM (SVPWM) control and from this the current error space phasor boundary is obtained. This current error space phasor boundary is approximated with four parabolas and then the system is run with space phasor based hysteresis PWM controller by limiting the CESV within the parabolic boundary. The proposed controller has increased modulation range, absence of 5th and 7th order harmonics for the entire modulation range, nearly constant switching frequency, fast dynamic response with smooth transition to the over modulation region and a simple controller implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative use of satellite-derived rainfall products for various scientific applications often requires them to be accompanied with an error estimate. Rainfall estimates inferred from low earth orbiting satellites like the Tropical Rainfall Measuring Mission (TRMM) will be subjected to sampling errors of nonnegligible proportions owing to the narrow swath of satellite sensors coupled with a lack of continuous coverage due to infrequent satellite visits. The authors investigate sampling uncertainty of seasonal rainfall estimates from the active sensor of TRMM, namely, Precipitation Radar (PR), based on 11 years of PR 2A25 data product over the Indian subcontinent. In this paper, a statistical bootstrap technique is investigated to estimate the relative sampling errors using the PR data themselves. Results verify power law scaling characteristics of relative sampling errors with respect to space-time scale of measurement. Sampling uncertainty estimates for mean seasonal rainfall were found to exhibit seasonal variations. To give a practical example of the implications of the bootstrap technique, PR relative sampling errors over a subtropical river basin of Mahanadi, India, are examined. Results reveal that the bootstrap technique incurs relative sampling errors < 33% (for the 2 degrees grid), < 36% (for the 1 degrees grid), < 45% (for the 0.5 degrees grid), and < 57% (for the 0.25 degrees grid). With respect to rainfall type, overall sampling uncertainty was found to be dominated by sampling uncertainty due to stratiform rainfall over the basin. The study compares resulting error estimates to those obtained from latin hypercube sampling. Based on this study, the authors conclude that the bootstrap approach can be successfully used for ascertaining relative sampling errors offered by TRMM-like satellites over gauged or ungauged basins lacking in situ validation data. This technique has wider implications for decision making before incorporating microwave orbital data products in basin-scale hydrologic modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of designing an optimal pointwise shrinkage estimator in the transform domain, based on the minimum probability of error (MPE) criterion. We assume an additive model for the noise corrupting the clean signal. The proposed formulation is general in the sense that it can handle various noise distributions. We consider various noise distributions (Gaussian, Student's-t, and Laplacian) and compare the denoising performance of the estimator obtained with the mean-squared error (MSE)-based estimators. The MSE optimization is carried out using an unbiased estimator of the MSE, namely Stein's Unbiased Risk Estimate (SURE). Experimental results show that the MPE estimator outperforms the SURE estimator in terms of SNR of the denoised output, for low (0 -10 dB) and medium values (10 - 20 dB) of the input SNR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we study the problem of determining an appropriate grading of meshes for a system of coupled singularly perturbed reaction-diffusion problems having diffusion parameters with different magnitudes. The central difference scheme is used to discretize the problem on adaptively generated mesh where the mesh equation is derived using an equidistribution principle. An a priori monitor function is obtained from the error estimate. A suitable a posteriori analogue of this monitor function is also derived for the mesh construction which will lead to an optimal second-order parameter uniform convergence. We present the results of numerical experiments for linear and semilinear reaction-diffusion systems to support the effectiveness of our preferred monitor function obtained from theoretical analysis. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matroidal networks were introduced by Dougherty et al. and have been well studied in the recent past. It was shown that a network has a scalar linear network coding solution if and only if it is matroidal associated with a representable matroid. A particularly interesting feature of this development is the ability to construct (scalar and vector) linearly solvable networks using certain classes of matroids. Furthermore, it was shown through the connection between network coding and matroid theory that linear network coding is not always sufficient for general network coding scenarios. The current work attempts to establish a connection between matroid theory and network-error correcting and detecting codes. In a similar vein to the theory connecting matroids and network coding, we abstract the essential aspects of linear network-error detecting codes to arrive at the definition of a matroidal error detecting network (and similarly, a matroidal error correcting network abstracting from network-error correcting codes). An acyclic network (with arbitrary sink demands) is then shown to possess a scalar linear error detecting (correcting) network code if and only if it is a matroidal error detecting (correcting) network associated with a representable matroid. Therefore, constructing such network-error correcting and detecting codes implies the construction of certain representable matroids that satisfy some special conditions, and vice versa. We then present algorithms that enable the construction of matroidal error detecting and correcting networks with a specified capability of network-error correction. Using these construction algorithms, a large class of hitherto unknown scalar linearly solvable networks with multisource, multicast, and multiple-unicast network-error correcting codes is made available for theoretical use and practical implementation, with parameters, such as number of information symbols, number of sinks, number of coding nodes, error correcting capability, and so on, being arbitrary but for computing power (for the execution of the algorithms). The complexity of the construction of these networks is shown to be comparable with the complexity of existing algorithms that design multicast scalar linear network-error correcting codes. Finally, we also show that linear network coding is not sufficient for the general network-error correction (detection) problem with arbitrary demands. In particular, for the same number of network errors, we show a network for which there is a nonlinear network-error detecting code satisfying the demands at the sinks, whereas there are no linear network-error detecting codes that do the same.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of exact-repair regenerating codes is constructed by stitching together shorter erasure correction codes, where the stitching pattern can be viewed as block designs. The proposed codes have the help-by-transfer property where the helper nodes simply transfer part of the stored data directly, without performing any computation. This embedded error correction structure makes the decoding process straightforward, and in some cases the complexity is very low. We show that this construction is able to achieve performance better than space-sharing between the minimum storage regenerating codes and the minimum repair-bandwidth regenerating codes, and it is the first class of codes to achieve this performance. In fact, it is shown that the proposed construction can achieve a nontrivial point on the optimal functional-repair tradeoff, and it is asymptotically optimal at high rate, i.e., it asymptotically approaches the minimum storage and the minimum repair-bandwidth simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We revisit the a posteriori error analysis of discontinuous Galerkin methods for the obstacle problem derived in 25]. Under a mild assumption on the trace of obstacle, we derive a reliable a posteriori error estimator which does not involve min/max functions. A key in this approach is an auxiliary problem with discrete obstacle. Applications to various discontinuous Galerkin finite element methods are presented. Numerical experiments show that the new estimator obtained in this article performs better.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider carrier frequency offset (CFO) estimation in the context of multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems over noisy frequency-selective wireless channels with both single- and multiuser scenarios. We conceived a new approach for parameter estimation by discretizing the continuous-valued CFO parameter into a discrete set of bins and then invoked detection theory, analogous to the minimum-bit-error-ratio optimization framework for detecting the finite-alphabet received signal. Using this radical approach, we propose a novel CFO estimation method and study its performance using both analytical results and Monte Carlo simulations. We obtain expressions for the variance of the CFO estimation error and the resultant BER degradation with the single- user scenario. Our simulations demonstrate that the overall BER performance of a MIMO-OFDM system using the proposed method is substantially improved for all the modulation schemes considered, albeit this is achieved at increased complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing the mutation rate, mu, of viruses above a threshold, mu(c), has been predicted to trigger a catastrophic loss of viral genetic information and is being explored as a novel intervention strategy. Here, we examine the dynamics of this transition using stochastic simulations mimicking within-host HIV-1 evolution. We find a scaling law governing the characteristic time of the transition: tau approximate to 0.6/(mu - mu(c)). The law is robust to variations in underlying evolutionary forces and presents guidelines for treatment of HIV-1 infection with mutagens. We estimate that many years of treatment would be required before HIV-1 can suffer an error catastrophe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reliable and efficient a posteriori error estimator is derived for a class of discontinuous Galerkin (DG) methods for the Signorini problem. A common property shared by many DG methods leads to a unified error analysis with the help of a constraint preserving enriching map. The error estimator of DG methods is comparable with the error estimator of the conforming methods. Numerical experiments illustrate the performance of the error estimator. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C-0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers decentralized spectrum sensing, i.e., detection of occupancy of the primary users' spectrum by a set of Cognitive Radio (CR) nodes, under a Bayesian set-up. The nodes use energy detection to make their individual decisions, which are combined at a Fusion Center (FC) using the K-out-of-N fusion rule. The channel from the primary transmitter to the CR nodes is assumed to undergo fading, while that from the nodes to the FC is assumed to be error-free. In this scenario, a novel concept termed as the Error Exponent with a Confidence Level (EECL) is introduced to evaluate and compare the performance of different detection schemes. Expressions for the EECL under general fading conditions are derived. As a special case, it is shown that the conventional error exponent both at individual sensors, and at the FC is zero. Further, closed-form lower bounds on the EECL are derived under Rayleigh fading and lognormal shadowing. As an example application, it answers the question of whether to use pilot-signal based narrowband sensing, where the signal undergoes Rayleigh fading, or to sense over the entire bandwidth of a wideband signal, where the signal undergoes lognormal shadowing. Theoretical results are validated using Monte Carlo simulations. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional source coding problem in which the receiver side information (Has-set) and demands (Want-set) include functions of source messages is studied using row-Latin rectangle. The source transmits encoded messages, called the functional source code, in order to satisfy the receiver's demands. We obtain a minimum length using the row-Latin rectangle. Next, we consider the case of transmission errors and provide a necessary and sufficient condition that a functional source code must satisfy so that the receiver can correctly decode the values of the functions in its Want-set.