991 resultados para Error Vector Magnitude (EVM)
Resumo:
Using methods of Statistical Physics, we investigate the generalization performance of support vector machines (SVMs), which have been recently introduced as a general alternative to neural networks. For nonlinear classification rules, the generalization error saturates on a plateau, when the number of examples is too small to properly estimate the coefficients of the nonlinear part. When trained on simple rules, we find that SVMs overfit only weakly. The performance of SVMs is strongly enhanced, when the distribution of the inputs has a gap in feature space.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
This study examines the forecasting accuracy of alternative vector autoregressive models each in a seven-variable system that comprises in turn of daily, weekly and monthly foreign exchange (FX) spot rates. The vector autoregressions (VARs) are in non-stationary, stationary and error-correction forms and are estimated using OLS. The imposition of Bayesian priors in the OLS estimations also allowed us to obtain another set of results. We find that there is some tendency for the Bayesian estimation method to generate superior forecast measures relatively to the OLS method. This result holds whether or not the data sets contain outliers. Also, the best forecasts under the non-stationary specification outperformed those of the stationary and error-correction specifications, particularly at long forecast horizons, while the best forecasts under the stationary and error-correction specifications are generally similar. The findings for the OLS forecasts are consistent with recent simulation results. The predictive ability of the VARs is very weak.
Resumo:
Large monitoring networks are becoming increasingly common and can generate large datasets from thousands to millions of observations in size, often with high temporal resolution. Processing large datasets using traditional geostatistical methods is prohibitively slow and in real world applications different types of sensor can be found across a monitoring network. Heterogeneities in the error characteristics of different sensors, both in terms of distribution and magnitude, presents problems for generating coherent maps. An assumption in traditional geostatistics is that observations are made directly of the underlying process being studied and that the observations are contaminated with Gaussian errors. Under this assumption, sub–optimal predictions will be obtained if the error characteristics of the sensor are effectively non–Gaussian. One method, model based geostatistics, assumes that a Gaussian process prior is imposed over the (latent) process being studied and that the sensor model forms part of the likelihood term. One problem with this type of approach is that the corresponding posterior distribution will be non–Gaussian and computationally demanding as Monte Carlo methods have to be used. An extension of a sequential, approximate Bayesian inference method enables observations with arbitrary likelihoods to be treated, in a projected process kriging framework which is less computationally intensive. The approach is illustrated using a simulated dataset with a range of sensor models and error characteristics.
Resumo:
Regression problems are concerned with predicting the values of one or more continuous quantities, given the values of a number of input variables. For virtually every application of regression, however, it is also important to have an indication of the uncertainty in the predictions. Such uncertainties are expressed in terms of the error bars, which specify the standard deviation of the distribution of predictions about the mean. Accurate estimate of error bars is of practical importance especially when safety and reliability is an issue. The Bayesian view of regression leads naturally to two contributions to the error bars. The first arises from the intrinsic noise on the target data, while the second comes from the uncertainty in the values of the model parameters which manifests itself in the finite width of the posterior distribution over the space of these parameters. The Hessian matrix which involves the second derivatives of the error function with respect to the weights is needed for implementing the Bayesian formalism in general and estimating the error bars in particular. A study of different methods for evaluating this matrix is given with special emphasis on the outer product approximation method. The contribution of the uncertainty in model parameters to the error bars is a finite data size effect, which becomes negligible as the number of data points in the training set increases. A study of this contribution is given in relation to the distribution of data in input space. It is shown that the addition of data points to the training set can only reduce the local magnitude of the error bars or leave it unchanged. Using the asymptotic limit of an infinite data set, it is shown that the error bars have an approximate relation to the density of data in input space.
Resumo:
The accuracy of altimetrically derived oceanographic and geophysical information is limited by the precision of the radial component of the satellite ephemeris. A non-dynamic technique is proposed as a method of reducing the global radial orbit error of altimetric satellites. This involves the recovery of each coefficient of an analytically derived radial error correction through a refinement of crossover difference residuals. The crossover data is supplemented by absolute height measurements to permit the retrieval of otherwise unobservable geographically correlated and linearly combined parameters. The feasibility of the radial reduction procedure is established upon application to the three day repeat orbit of SEASAT. The concept of arc aggregates is devised as a means of extending the method to incorporate longer durations, such as the 35 day repeat period of ERS-1. A continuous orbit is effectively created by including the radial misclosure between consecutive long arcs as an infallible observation. The arc aggregate procedure is validated using a combination of three successive SEASAT ephemerides. A complete simulation of the 501 revolution per 35 day repeat orbit of ERS-1 is derived and the recovery of the global radial orbit error over the full repeat period is successfully accomplished. The radial reduction is dependent upon the geographical locations of the supplementary direct height data. Investigations into the respective influences of various sites proposed for the tracking of ERS-1 by ground-based transponders are carried out. The potential effectiveness on the radial orbital accuracy of locating future tracking sites in regions of high latitudinal magnitude is demonstrated.
Resumo:
In this paper, we discuss how discriminative training can be applied to the hidden vector state (HVS) model in different task domains. The HVS model is a discrete hidden Markov model (HMM) in which each HMM state represents the state of a push-down automaton with a finite stack size. In previous applications, maximum-likelihood estimation (MLE) is used to derive the parameters of the HVS model. However, MLE makes a number of assumptions and unfortunately some of these assumptions do not hold. Discriminative training, without making such assumptions, can improve the performance of the HVS model by discriminating the correct hypothesis from the competing hypotheses. Experiments have been conducted in two domains: the travel domain for the semantic parsing task using the DARPA Communicator data and the Air Travel Information Services (ATIS) data and the bioinformatics domain for the information extraction task using the GENIA corpus. The results demonstrate modest improvements of the performance of the HVS model using discriminative training. In the travel domain, discriminative training of the HVS model gives a relative error reduction rate of 31 percent in F-measure when compared with MLE on the DARPA Communicator data and 9 percent on the ATIS data. In the bioinformatics domain, a relative error reduction rate of 4 percent in F-measure is achieved on the GENIA corpus.
Resumo:
Natural language understanding (NLU) aims to map sentences to their semantic mean representations. Statistical approaches to NLU normally require fully-annotated training data where each sentence is paired with its word-level semantic annotations. In this paper, we propose a novel learning framework which trains the Hidden Markov Support Vector Machines (HM-SVMs) without the use of expensive fully-annotated data. In particular, our learning approach takes as input a training set of sentences labeled with abstract semantic annotations encoding underlying embedded structural relations and automatically induces derivation rules that map sentences to their semantic meaning representations. The proposed approach has been tested on the DARPA Communicator Data and achieved 93.18% in F-measure, which outperforms the previously proposed approaches of training the hidden vector state model or conditional random fields from unaligned data, with a relative error reduction rate of 43.3% and 10.6% being achieved.
Resumo:
Background/aim: The technique of photoretinoscopy is unique in being able to measure the dynamics of the oculomotor system (ocular accommodation, vergence, and pupil size) remotely (working distance typically 1 metre) and objectively in both eyes simultaneously. The aim af this study was to evaluate clinically the measurement of refractive error by a recent commercial photoretinoscopic device, the PowerRefractor (PlusOptiX, Germany). Method: The validity and repeatability of the PowerRefractor was compared to: subjective (non-cycloplegic) refraction on 100 adult subjects (mean age 23.8 (SD 5.7) years) and objective autarefractian (Shin-Nippon SRW-5000, Japan) on 150 subjects (20.1 (4.2) years). Repeatability was assessed by examining the differences between autorefractor readings taken from each eye and by re-measuring the objective prescription of 100 eyes at a subsequent session. Results: On average the PowerRefractor prescription was not significantly different from the subjective refraction, although quite variable (difference -0.05 (0.63) D, p = 0.41) and more negative than the SRW-5000 prescription (by -0.20 (0.72) D, p<0.001). There was no significant bias in the accuracy of the instrument with regard to the type or magnitude of refractive error. The PowerRefractor was found to be repeatable over the prescription range of -8.75D to +4.00D (mean spherical equivalent) examined. Conclusion: The PowerRefractor is a useful objective screening instrument and because of its remote and rapid measurement of both eyes simultaneously is able to assess the oculomotor response in a variety of unrestricted viewing conditions and patient types.
Resumo:
Abstract A new LIBS quantitative analysis method based on analytical line adaptive selection and Relevance Vector Machine (RVM) regression model is proposed. First, a scheme of adaptively selecting analytical line is put forward in order to overcome the drawback of high dependency on a priori knowledge. The candidate analytical lines are automatically selected based on the built-in characteristics of spectral lines, such as spectral intensity, wavelength and width at half height. The analytical lines which will be used as input variables of regression model are determined adaptively according to the samples for both training and testing. Second, an LIBS quantitative analysis method based on RVM is presented. The intensities of analytical lines and the elemental concentrations of certified standard samples are used to train the RVM regression model. The predicted elemental concentration analysis results will be given with a form of confidence interval of probabilistic distribution, which is helpful for evaluating the uncertainness contained in the measured spectra. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples have been carried out. The multiple correlation coefficient of the prediction was up to 98.85%, and the average relative error of the prediction was 4.01%. The experiment results showed that the proposed LIBS quantitative analysis method achieved better prediction accuracy and better modeling robustness compared with the methods based on partial least squares regression, artificial neural network and standard support vector machine.
Resumo:
Background - The aim was to derive equations for the relationship between unaided vision and age, pupil diameter, iris colour and sphero-cylindrical refractive error. Methods - Data were collected from 663 healthy right eyes of white subjects aged 20 to 70 years. Subjective sphero-cylindrical refractive errors ranged from -6.8 to +9.4 D (mean spherical equivalent), -1.5 to +1.9 D (orthogonal component, J0) and -0.8 to 1.0 D (oblique component, J45). Cylinder axis orientation was orthogonal in 46 per cent of the eyes and oblique in 18 per cent. Unaided vision (-0.3 to +1.3 logMAR), pupil diameter (2.3 to 7.5 mm) and iris colour (67 per cent light/blue irides) was recorded. The sample included mostly females (60 per cent) and many contact lens wearers (42 per cent) and so the influences of these parameters were also investigated. Results - Decision tree analysis showed that sex, iris colour, contact lens wear and cylinder axis orientation did not influence the relationship between unaided vision and refractive error. New equations for the dependence of the minimum angle of resolution on age and pupil diameter arose from step backwards multiple linear regressions carried out separately on the myopes (2.91.scalar vector +0.51.pupil diameter -3.14 ) and hyperopes (1.55.scalar vector + 0.06.age – 3.45 ). Conclusion - The new equations may be useful in simulators designed for teaching purposes as they accounted for 81 per cent (for myopes) and 53 per cent (for hyperopes) of the variance in measured data. In comparison, previously published equations accounted for not more than 76 per cent (for myopes) and 24 per cent (for hyperopes) of the variance depending on whether they included pupil size. The new equations are, as far as is known to the authors, the first to include age. The age-related decline in accommodation is reflected in the equation for hyperopes.
Resumo:
Data fluctuation in multiple measurements of Laser Induced Breakdown Spectroscopy (LIBS) greatly affects the accuracy of quantitative analysis. A new LIBS quantitative analysis method based on the Robust Least Squares Support Vector Machine (RLS-SVM) regression model is proposed. The usual way to enhance the analysis accuracy is to improve the quality and consistency of the emission signal, such as by averaging the spectral signals or spectrum standardization over a number of laser shots. The proposed method focuses more on how to enhance the robustness of the quantitative analysis regression model. The proposed RLS-SVM regression model originates from the Weighted Least Squares Support Vector Machine (WLS-SVM) but has an improved segmented weighting function and residual error calculation according to the statistical distribution of measured spectral data. Through the improved segmented weighting function, the information on the spectral data in the normal distribution will be retained in the regression model while the information on the outliers will be restrained or removed. Copper elemental concentration analysis experiments of 16 certified standard brass samples were carried out. The average value of relative standard deviation obtained from the RLS-SVM model was 3.06% and the root mean square error was 1.537%. The experimental results showed that the proposed method achieved better prediction accuracy and better modeling robustness compared with the quantitative analysis methods based on Partial Least Squares (PLS) regression, standard Support Vector Machine (SVM) and WLS-SVM. It was also demonstrated that the improved weighting function had better comprehensive performance in model robustness and convergence speed, compared with the four known weighting functions.
Resumo:
Trials in a temporal two-interval forced-choice discrimination experiment consist of two sequential intervals presenting stimuli that differ from one another as to magnitude along some continuum. The observer must report in which interval the stimulus had a larger magnitude. The standard difference model from signal detection theory analyses poses that order of presentation should not affect the results of the comparison, something known as the balance condition (J.-C. Falmagne, 1985, in Elements of Psychophysical Theory). But empirical data prove otherwise and consistently reveal what Fechner (1860/1966, in Elements of Psychophysics) called time-order errors, whereby the magnitude of the stimulus presented in one of the intervals is systematically underestimated relative to the other. Here we discuss sensory factors (temporary desensitization) and procedural glitches (short interstimulus or intertrial intervals and response bias) that might explain the time-order error, and we derive a formal model indicating how these factors make observed performance vary with presentation order despite a single underlying mechanism. Experimental results are also presented illustrating the conventional failure of the balance condition and testing the hypothesis that time-order errors result from contamination by the factors included in the model.
Resumo:
A CMOS vector-sum phase shifter covering the full 360° range is presented in this paper. Broadband operational transconductance amplifiers with variable transconductance provide coarse scaling of the quadrature vector amplitudes. Fine scaling of the amplitudes is accomplished using a passive resistive network. Expressions are derived to predict the maximum bit resolution of the phase shifter from the scaling factor of the coarse and fine vector-scaling stages. The phase shifter was designed and fabricated using the standard 130-nm CMOS process and was tested on-wafer over the frequency range of 4.9–5.9 GHz. The phase shifter delivers root mean square (rms) phase and amplitude errors of 1.25° and 0.7 dB, respectively, at the midband frequency of 5.4 GHz. The input and output return losses are both below 17 dB over the band, and the insertion loss is better than 4 dB over the band. The circuit uses an area of 0.303 mm2 excluding bonding pads and draws 28 mW from a 1.2 V supply.
Resumo:
A investigação na área da saúde e a utilização dos seus resultados tem funcionado como base para a melhoria da qualidade de cuidados, exigindo dos profissionais de saúde conhecimentos na área específica onde desempenham funções, conhecimentos em metodologia de investigação que incluam as técnicas de observação, técnicas de recolha e análise de dados, para mais facilmente serem leitores capacitados dos resultados da investigação. Os profissionais de saúde são observadores privilegiados das respostas humanas à saúde e à doença, podendo contribuir para o desenvolvimento e bem-estar dos indivíduos muitas vezes em situações de grande vulnerabilidade. Em saúde infantil e pediatria o enfoque está nos cuidados centrados na família privilegiando-se o desenvolvimento harmonioso da criança e jovem, valorizando os resultados mensuráveis em saúde que permitam determinar a eficácia das intervenções e a qualidade de saúde e de vida. No contexto pediátrico realçamos as práticas baseadas na evidência, a importância atribuída à pesquisa e à aplicação dos resultados da investigação nas práticas clínicas, assim como o desenvolvimento de instrumentos de mensuração padronizados, nomeadamente as escalas de avaliação, de ampla utilização clínica, que facilitam a apreciação e avaliação do desenvolvimento e da saúde das crianças e jovens e resultem em ganhos em saúde. A observação de forma sistematizada das populações neonatais e pediátricas com escalas de avaliação tem vindo a aumentar, o que tem permitido um maior equilíbrio na avaliação das crianças e também uma observação baseada na teoria e nos resultados da investigação. Alguns destes aspetos serviram de base ao desenvolvimento deste trabalho que pretende dar resposta a 3 objetivos fundamentais. Para dar resposta ao primeiro objetivo, “Identificar na literatura científica, os testes estatísticos mais frequentemente utilizados pelos investigadores da área da saúde infantil e pediatria quando usam escalas de avaliação” foi feita uma revisão sistemática da literatura, que tinha como objetivo analisar artigos científicos cujos instrumentos de recolha de dados fossem escalas de avaliação, na área da saúde da criança e jovem, desenvolvidas com variáveis ordinais, e identificar os testes estatísticos aplicados com estas variáveis. A análise exploratória dos artigos permitiu-nos verificar que os investigadores utilizam diferentes instrumentos com diferentes formatos de medida ordinal (com 3, 4, 5, 7, 10 pontos) e tanto aplicam testes paramétricos como não paramétricos, ou os dois em simultâneo, com este tipo de variáveis, seja qual for a dimensão da amostra. A descrição da metodologia nem sempre explicita se são cumpridas as assunções dos testes. Os artigos consultados nem sempre fazem referência à distribuição de frequência das variáveis (simetria/assimetria) nem à magnitude das correlações entre os itens. A leitura desta bibliografia serviu de suporte à elaboração de dois artigos, um de revisão sistemática da literatura e outro de reflexão teórica. Apesar de terem sido encontradas algumas respostas às dúvidas com que os investigadores e os profissionais, que trabalham com estes instrumentos, se deparam, verifica-se a necessidade de desenvolver estudos de simulação que confirmem algumas situações reais e alguma teoria já existente, e trabalhem outros aspetos nos quais se possam enquadrar os cenários reais de forma a facilitar a tomada de decisão dos investigadores e clínicos que utilizam escalas de avaliação. Para dar resposta ao segundo objetivo “Comparar a performance, em termos de potência e probabilidade de erro de tipo I, das 4 estatísticas da MANOVA paramétrica com 2 estatísticas da MANOVA não paramétrica quando se utilizam variáveis ordinais correlacionadas, geradas aleatoriamente”, desenvolvemos um estudo de simulação, através do Método de Monte Carlo, efetuado no Software R. O delineamento do estudo de simulação incluiu um vetor com 3 variáveis dependentes, uma variável independente (fator com três grupos), escalas de avaliação com um formato de medida com 3, 4, 5, e 7 pontos, diferentes probabilidades marginais (p1 para distribuição simétrica, p2 para distribuição assimétrica positiva, p3 para distribuição assimétrica negativa e p4 para distribuição uniforme) em cada um dos três grupos, correlações de baixa, média e elevada magnitude (r=0.10, r=0.40, r=0.70, respetivamente), e seis dimensões de amostras (n=30, 60, 90, 120, 240, 300). A análise dos resultados permitiu dizer que a maior raiz de Roy foi a estatística que apresentou estimativas de probabilidade de erro de tipo I e de potência de teste mais elevadas. A potência dos testes apresenta comportamentos diferentes, dependendo da distribuição de frequência da resposta aos itens, da magnitude das correlações entre itens, da dimensão da amostra e do formato de medida da escala. Tendo por base a distribuição de frequência, considerámos três situações distintas: a primeira (com probabilidades marginais p1,p1,p4 e p4,p4,p1) em que as estimativas da potência eram muito baixas, nos diferentes cenários; a segunda situação (com probabilidades marginais p2,p3,p4; p1,p2,p3 e p2,p2,p3) em que a magnitude das potências é elevada, nas amostras com dimensão superior ou igual a 60 observações e nas escalas com 3, 4,5 pontos e potências de magnitude menos elevada nas escalas com 7 pontos, mas com a mesma ma magnitude nas amostras com dimensão igual a 120 observações, seja qual for o cenário; a terceira situação (com probabilidades marginais p1,p1,p2; p1,p2,p4; p2,p2,p1; p4,p4,p2 e p2,p2,p4) em que quanto maiores, a intensidade das correlações entre itens e o número de pontos da escala, e menor a dimensão das amostras, menor a potência dos testes, sendo o lambda de Wilks aplicado às ordens mais potente do que todas as outra s estatísticas da MANOVA, com valores imediatamente a seguir à maior raiz de Roy. No entanto, a magnitude das potências dos testes paramétricos e não paramétricos assemelha-se nas amostras com dimensão superior a 90 observações (com correlações de baixa e média magnitude), entre as variáveis dependentes nas escalas com 3, 4 e 5 pontos; e superiores a 240 observações, para correlações de baixa intensidade, nas escalas com 7 pontos. No estudo de simulação e tendo por base a distribuição de frequência, concluímos que na primeira situação de simulação e para os diferentes cenários, as potências são de baixa magnitude devido ao facto de a MANOVA não detetar diferenças entre grupos pela sua similaridade. Na segunda situação de simulação e para os diferentes cenários, a magnitude das potências é elevada em todos os cenários cuja dimensão da amostra seja superior a 60 observações, pelo que é possível aplicar testes paramétricos. Na terceira situação de simulação, e para os diferentes cenários quanto menor a dimensão da amostra e mais elevada a intensidade das correlações e o número de pontos da escala, menor a potência dos testes, sendo a magnitude das potências mais elevadas no teste de Wilks aplicado às ordens, seguido do traço de Pillai aplicado às ordens. No entanto, a magnitude das potências dos testes paramétricos e não paramétricos assemelha-se nas amostras com maior dimensão e correlações de baixa e média magnitude. Para dar resposta ao terceiro objetivo “Enquadrar os resultados da aplicação da MANOVA paramétrica e da MANOVA não paramétrica a dados reais provenientes de escalas de avaliação com um formato de medida com 3, 4, 5 e 7 pontos, nos resultados do estudo de simulação estatística” utilizaram-se dados reais que emergiram da observação de recém-nascidos com a escala de avaliação das competências para a alimentação oral, Early Feeding Skills (EFS), o risco de lesões da pele, com a Neonatal Skin Risk Assessment Scale (NSRAS), e a avaliação da independência funcional em crianças e jovens com espinha bífida, com a Functional Independence Measure (FIM). Para fazer a análise destas escalas foram realizadas 4 aplicações práticas que se enquadrassem nos cenários do estudo de simulação. A idade, o peso, e o nível de lesão medular foram as variáveis independentes escolhidas para selecionar os grupos, sendo os recém-nascidos agrupados por “classes de idade gestacional” e por “classes de peso” as crianças e jovens com espinha bífida por “classes etárias” e “níveis de lesão medular”. Verificou-se um bom enquadramento dos resultados com dados reais no estudo de simulação.