942 resultados para Enzyme Inhibitors -- pharmacology
Resumo:
OBJECTIVE - Angiotensin-converting enzyme inhibitors (ACEIs) have gained importance in preventing or attenuating the process of ventricular remodeling after myocardial infarction. The significance of infarct size in regard to the response to ACEIs, however, is controversial. This study aimed to analyze the effects of lisinopril on mortality rate, cardiac function, degree of cardiac hypertrophy and fibrosis in rats with different infarct sizes. METHODS - Lisinopril (20 mg/kg/day) dissolved in drinking water was administered to rats immediately after coronary artery occlusion. After being sacrificed, the infarcted animals were divided into two groups: one group of animals with small infarcts (< 40% of the left ventricle) and another group of animals with large infarcts (> 40% of the left ventricle). RESULTS - The mortality rate was 31.7% in treated rats and 47% in the untreated rats. There was no statistical difference between the groups with small and large infarcts in regard to myocardial concentration of hydroxyproline. In small infarcts, the treatment attenuated the heart dysfunction characterized by lower levels of blood pressure and lower values of the first derivative of pressure and of the negative derivative of pressure. The degree of hypertrophy was also attenuated in small infarcts. In regard to large infarcts, no differences between the groups were observed. CONCLUSION - Treatment with the ACEIs had no effect on mortality rate and on the amount of fibrosis. The protective effect of lisinopril on heart function and on the degree of hypertrophy could only be detected in small infarcts
Resumo:
The authors review the epidemiology, the etiological factors, the effect of the treatment in the evolution of the cardiovascular disease in arterial hypertension in elderly, and the use of angiotensin-converting-enzyme inhibitors such as a treatment option.
Resumo:
Purpose: To evaluate the antihypertensive efficacy and safety of cilazapril compared to nifedipine retard in mild to moderate hypertension. Methods: Forty randomized out-patients with mild moderate hypertension, diastolic pressure (DP) between 95 and 115 mmg/Hg, with placebo for 15 days were randomized and allocated for treatment, double-blind, once daily with cilazapril 2.5 mg (n = 20) or nifedipine retard 20 mg (20 = n) for four weeks. The non-responders (DP > 90 mmHg) had the dosage increased twice, b.i.d., while responders were maintained up to 10 weeks. Clinical visits were performed before, at baseline and every two weeks and the laboratory test was performed after placebo run-in, 4th and 10th weeks of treatment. Results: The blood pressure (BP) were similar between groups at the end of the placebo (cilazapril 151 ± 14/103 ± 5 - nifedipine 157 ± 17/108 ± 7 mmHg, p > 0.05). DP decreased already at second weeks (cilazapril 95 ± 9 - nifedipine 96 ± 11 mmHg, p < 0.05, compared to week 0) in both groups at the end of study with no differences inter groups. BP normalization was obtained in 58% of the patients with cilazapril and in 61% in the nifedipine group. Adverse biochemical effects were not observed in any group. Six (16%) patients of the cilazapril and 15 (39%) of nifedipine related collateral events, although no difference were observed between groups. Conclusion: Cilazapril 2.5 to 5 mg normalized BP in 58% of mild and moderate hypertension patients, and this efficacy was similar to sustained-release nifedipine 20 to 40 mg. Cilazapril had no adverse effects on the biochemical parameters with low incidence of collateral effects.
Resumo:
Background: Glucosamine 6-phosphate deaminase from Escherichia coli is an allosteric hexameric enzyme which catalyzes the reversible conversion of D-glucosamine 6-phosphate into D-fructose 6-phosphate and ammonium ion and is activated by N-acetyl-D-glucosamine 6-phosphate. Mechanistically, it belongs to the group of aldose-ketose isomerases, but its reaction also accomplishes a simultaneous amination/deamination. The determination of the structure of this protein provides fundamental knowledge for understanding its mode of action and the nature of allosteric conformational changes that regulate its function. Results: The crystal structure of glucosamine 6-phosphate deaminase with bound phosphate ions is presented at 2.1 Å resolution together with the refined structures of the enzyme in complexes with its allosteric activator and with a competitive inhibitor. The protein fold can be described as a modified NAD-binding domain. Conclusions: From the similarities between the three presented structures, it is concluded that these represent the enzymatically active R state conformer. A mechanism for the deaminase reaction is proposed. It comprises steps to open the pyranose ring of the substrate and a sequence of general base-catalyzed reactions to bring about isomerization and deamination, with Asp72 playing a key role as a proton exchanger.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigated the effects of losartan, an AT 1-receptor blocker, and ramipril, a converting enzyme inhibitor, on the pressor response induced by angiotensin II (ANG II) and carbachol (a cholinergic receptor agonist). Male Holtzman rats (250-300 g) with a stainless steel cannula implanted into the lateral ventricle (LV) were used. The injection of losartan (50 nmol/l μl) into the LV blocked the pressor response induced by ANG II (12 ng/l μl) and carbachol (2 nmol/l μl). After injection of ANG II and carbachol into the LV, mean arterial pressure (MAP) increased to 31 ± 1 and 28 ± 2 mmHg, respectively. Previous injection of losartan abolished the increase in MAP induced by ANG II and carbachol into the LV (2 ± 1 and 5 ± 2 mmHg, respectively). The injection of ramipril (12 ng/l μl) prior to carbachol blocked the pressor effect of carbachol to 7 ± 3 mmHg. These results suggest an interaction between central cholinergic pathways and the angiotensinergic system in the regulation of arterial blood pressure.
Resumo:
The long-term administration of nitric oxide synthesis inhibitors induces arterial hypertension accompanied by left ventricular hypertrophy and myocardial ischemic lesions. Because the enhancement of sympathetic drive has been implicated in these phenomena, the current study was performed to determine the potency of β-adrenoceptor agonists and muscarinic agonists on the spontaneous rate of isolated right atria from rats given long-term treatment with the nitric oxide inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME). Atrial lesions induced by long-term treatment with L-NAME were also evaluated. Long-term L-NAME treatment caused a time-dependent, significant (P<0.05) increase in tail-cuff pressure compared with control animals. Our results showed that the potency of isoproterenol, norepinephrine, carbachol, and pilocarpine in isolated right atria from rats given long-term treatment with L-NAME for 7, 15, 30, and 60 days was not affected as compared with control animals. Addition of L-NAME in vitro (100 μmol/L) affected neither basal rate nor chronotropic response for isoproterenol and norepinephrine in rat heart. Stereological analysis of the right atria at 15 and 30 days revealed a significant increase on amount of fibrous tissues in L-NAME- treated groups (27±2.3% and 28±1.3% for 15 and 30 days, respectively; P<0.05) as compared with the control group (22±1.1%). Our results indicate that nitric oxide does not to interfere with β-adrenoceptor-mediated and muscarinic receptor-mediated chronotropic responses.
Resumo:
Flavopiridol has been shown to potently inhibit CDK1 and 2 (cyclin-dependent kinases 1 and 2) and most recently it has been found that it also inhibits CDK9. The complex CDK9-cyclin T1 controls the elongation phase of transcription by RNA polymerase II. The present work describes a molecular model for the binary complex CDK9-flavopiridol. This structural model indicates that the inhibitor strongly binds to the ATP-binding pocket of CDK9 and the structural comparison of the complex CDK2-flavopiridol correlates the structural differences with differences in inhibition of these CDKs by flavopiridol. This structure opens the possibility of testing new inhibitor families, in addition to new substituents for the already known leading structures such as flavones and adenine derivatives. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
A strain of Aspergillus giganteus cultivated in a medium with xylan produced two xylanases (xylanase I and II) which were purified to homogeneity. Their molar mass, estimated by SDS-PAGE, were 21 and 24 kDa, respectively. Both enzymes are glycoproteins with 50°C temperature optimum; optimum pH was 6.0-6.5 for xylanase I and 6.0 for xylanase II. At 50°C xylanase I exhibited higher thermostability than xylanase II. Hg2+, Cu 2+ and SDS were strong inhibitors, 1,4-dithiothreitol stimulated the reaction of both enzymes. Both xylanases are xylan-specific; kinetic parameters indicated higher efficiency in the hydrolysis of oat spelts xylan. In hydrolysis of this substrate, xylotriose, xylotetraose and larger xylooligosaccharides were released and hence the enzymes were classified as endoxylanases.
Resumo:
Osteoblast-derived IL-6 functions in coupled bone turnover by supporting osteoclastogenesis favoring bone resorption instead of bone deposition. Gene regulation of IL-6 is complex occurring both at transcription and post-transcription levels. The focus of this paper is at the level of mRNA stability, which is important in IL-6 gene regulation. Using the MC3T3-E1 as an osteoblastic model, IL-6 secretion was dose dependently decreased by SB203580, a p38 MAPK inhibitor. Steady state IL-6 mRNA was decreased with SB203580 (2 μM) ca. 85% when stimulated by IL-1β (1-5 ng/ ml). These effects require de novo protein synthesis as they were inhibited by cycloheximide. p38 MAPK had minor effects on proximal IL-6 promoter activity in reporter gene assays. A more significant effect on IL-6 mRNA stability was observed in the presence of SB203580. Western blot analysis confirmed that SB203580 inhibited p38 MAP kinase, in response to IL-1β in a dose dependent manner in MC3T3-E1 cells. Stably transfected MC3T3-E1 reporter cell lines (MC6) containing green fluorescent protein (GFP) with the 3′untranslated region of IL-6 were constructed. Results indicated that IL-1β, TNFα, LPS but not parathyroid hormone (PTH) could increase GFP expression of these reporter cell lines. Endogenous IL-6 and reporter gene eGFP-IL-6 3′UTR mRNA was regulated by p38 in MC6 cells. In addition, transient transfection of IL-6 3′UTR reporter cells with immediate upstream MAP kinase kinase-3 and -6 increased GFP expression compared to mock transfected controls. These results indicate that p38 MAPK regulates IL-1β-stimulated IL-6 at a post transcriptional mechanism and one of the primary targets of IL-6 gene regulation is the 3′UTR of IL-6.
Resumo:
Proteinase-activated receptor-2 (PAR2) is a G-protein-coupled receptor that mediates cellular responses to extracellular proteinases. Since PAR2 is expressed by oral epithelial cells, osteoblasts, and gingival fibroblasts, where its activation releases interleukin-8, we hypothesized that PAR2 activation may participate in periodontal disease in vivo. We investigated the role of PAR2 activation in periodontal disease in rats. Radiographic and enzymatic (myeloperoxidase) analysis revealed that topical application of PAR2 agonist causes periodontitis but also exacerbates existing periodontitis, leading to significant alveolar bone loss and gingival granulocyte infiltration. Inhibition of matrix metalloproteinase (MMP) and cyclo-oxygenase (COX) decreased PAR2 agonist-induced periodontitis. More specifically, the overexpression of COX-1, COX-2, MMP-2, and MMP-9 in gingival tissues suggests that they are involved in PAR 2-induced periodontitis. In conclusion, PAR2 agonist causes periodontitis in rats through a mechanism involving prostaglandin release and MMP activation. Inhibition of PAR2 may represent a novel approach to modulate host response in periodontitis.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and drugs that inhibit this enzyme may have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Here, we describe kinetics and crystal structure of human PNP in complex with 7-methyl-6-thio-guanosine, a synthetic substrate, which is largely used in activity assays. Analysis of the structure identifies different protein conformational changes upon ligand binding, and comparison of kinetic and structural data permits an understanding of the effects of atomic substitution on key positions of the synthetic substrate and their consequences to enzyme binding and catalysis. Such knowledge may be helpful in designing new PNP inhibitors. © 2005 Elsevier Inc. All rights reserved.
Resumo:
A newly-isolated thermophilic strain of the zygomycete fungus Rhizomucor pusillus 13.36 produced highly active dextrinogenic and saccharogenic enzymes. Cassava pulp was a good alternative substrate for amylase production. Dextrinogenic and saccharogenic amylases exhibited optimum activities at a pH of 4.0-4.5 and 5.0 respectively and at a temperature of 75°C. The enzymes were highly thermostable, with no detectable loss of saccharogenic or dextrinogenic activity after 1 h and 6 h at 60°C, respectively. The saccharogenic activity was inhibited by Ca2+ while the dextrinogenic was indifferent to this ion. Both activities were inhibited by Fe2+ and Cu2+ Hydrolysis of soluble starch by the crude enzyme yielded 66% glucose, 19.5% maltose, 7.7% maltotriose and 6.6% oligosaccharides. Copyright © 2005, The Microbiological Society of Korea.
Resumo:
Microinjection of S-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the nucleus of the solitary tract (NTS) of conscious rats causes hypertension, bradycardia, and vasoconstriction in the renal, mesenteric, and hindquarter vascular beds. In the hindquarter, the initial vasoconstriction is followed by vasodilation with AMPA doses >5 pmol/100 nl. To test the hypothesis that this vasodilation is caused by activation of a nitroxidergic pathway in the NTS, we examined the effect of pretreatment with the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 10 nmol/100 nl, microinjected into the NTS) on changes in mean arterial pressure, heart rate, and regional vascular conductance (VC) induced by microinjection of AMPA (10 pmol/100 nl in the NTS) in conscious rats. AMPA increased hindquarter VC by 18 ± 4%, but after pretreatment with L-NAME, AMPA reduced hindquarter VC by 16 ± 7% and 17 ± 9% (5 and 15 min after pretreatment, P < 0.05 compared with before pretreatment). Pretreatment with L-NAME reduced AMPA-induced bradycardia from 122 ± 40 to 92 ± 32 beats/min but did not alter the hypertension induced by AMPA (35 ± 5 mmHg before pretreatment, 43 ± 6 mmHg after pretreatment). Control injections with D-NAME did not affect resting values or the response to AMPA. The present study shows that stimulation of AMPA receptors in the NTS activates both vasodilatatory and vasoconstrictor mechanisms and that the vasodilatatory mechanism depends on production of nitric oxide in the NTS. Copyright © 2006 the American Physiological Society.