950 resultados para Environmentally friendly reduction
Resumo:
The purpose of the METKU Project (Development of Maritime Safety Culture) is to study how the ISM Code has influenced the safety culture in the maritime industry. This literature review is written as a part of the Work Package 2 which is conducted by the University of Turku, Centre for Maritime Studies. The maritime traffic is rapidly growing in the Baltic Sea which leads to a growing risk of maritime accidents. Particularly in the Gulf of Finland, the high volume of traffic causes a high risk of maritime accidents. The growing risks give us good reasons for implementing the research project concerning maritime safety and the effectiveness of the safety measures, such as the safety management systems. In order to reduce maritime safety risks, the safety management systems should be further developed. The METKU Project has been launched to examine the improvements which can be done to the safety management systems. Human errors are considered as the most important reason for maritime accidents. The international safety management code (the ISM Code) has been established to cut down the occurrence of human errors by creating a safety-oriented organizational culture for the maritime industry. The ISM Code requires that a company should provide safe practices in ship operation and a safe working environment and establish safeguards against all identified risk. The fundamental idea of the ISM Code is that companies should continuously improve safety. The commitment of the top management is essential for implementing a safety-oriented culture in a company. The ISM Code has brought a significant contribution to the progress of maritime safety in recent years. Shipping companies and ships’ crews are more environmentally friendly and more safety-oriented than 12 years ago. This has been showed by several studies which have been analysed for this literature research. Nevertheless, the direct effect and influence of the ISM Code on maritime safety could not be isolated very well. No quantitative measurement (statistics/hard data) could be found in order to present the impacts of the ISM Code on maritime safety. In this study it has been discovered that safety culture has emerged and it is developing in the maritime industry. Even though the roots of the safety culture have been established there are still serious barriers to the breakthrough of the safety management. These barriers could be envisaged as cultural factors preventing the safety process. Even though the ISM Code has been effective over a decade, the old-established behaviour which is based on the old day’s maritime culture still occurs. In the next phase of this research project, these cultural factors shall be analysed in regard to the present safety culture of the maritime industry in Finland.
Resumo:
An introduction to the fundamental concepts and main aspects of organic clean synthesis is given, and relevant industrial examples which have implemented the philosophy of cleaner synthesis are also presented. Recent trends in organic synthesis which are environmentally friendly are also discussed.
Resumo:
El magatzem de residus de l'empresa Orica de Sidney, Austràlia, és el magatzem d'hexaclorobenzè (HCB) més gran del món. El HCB és un dels compostos més tòxics i persistents que es coneixen, i està inclòs a la llista de la Convenció d'Estocolm sobre contaminants orgànics persistents (POPs). Durant molts anys, Orica ha intentat exportar els seus residus a diversos països d'Europa. Però un tractament alternatiu com la bioremediació podria ser una solució més segura, econòmica i ambientalment responsable.
Resumo:
The role of transport in the economy is twofold. As a sector of economic activity it contributes to a share of national income. On the other hand, improvements in transport infrastructure create room for accelerated economic growth. As a means to support railways as a safe and environmentally friendly transportation mode, the EU legislation has required the opening of domestic railway freight for competition from beginning of year 2007. The importance of railways as a mode of transport has been great in Finland, as a larger share of freight has been carried on rails than in Europe on average. In this thesis it is claimed that the efficiency of goods transport can be enhanced by service specific investments. Furthermore, it is stressed that simulation can and should be used to evaluate the cost-efficiency of transport systems on operational level, as well as to assess transportation infrastructure investments. In all the studied cases notable efficiency improvements were found. For example in distribution, home delivery of groceries can be almost twice as cost efficient as the current practice of visiting the store. The majority of the cases concentrated on railway freight. In timber transportation, the item with the largest annual transport volume in domestic railway freight in Finland, the transportation cost could be reduced most substantially. Also in international timber procurement, the utilization of railway wagons could be improved by combining complementary flows. The efficiency improvements also have positive environmental effects; a large part of road transit could be moved to rails annually. If impacts of freight transport are included in cost-benefit analysis of railway investments, up to 50 % increase in the net benefits of the evaluated alternatives can be experienced, avoiding a possible inbuilt bias in the assessment framework, and thus increasing the efficiency of national investments in transportation infrastructure. Transportation systems are a typical example of complex real world systems that cannot be analysed realistically by analytical methods, whereas simulation allows inclusion of dynamics and the level of detail required. Regarding simulation as a viable tool for assessing the efficiency of transportation systems finds support also in the international survey conducted for railway freight operators; operators use operations research methods widely for planning purposes, while simulation is applied only by the larger operators.
Resumo:
Efforts presented by the scientific community in recent years towards the development of numerous green chemical processes and wastewater treatment technologies are presented and discussed. In the light of these approaches, environmentally friendly technologies, as well as the key role played by the well-known advanced oxidation processes, are discussed, giving special attention to the ones comprising ozone applications. Fundamentals and applied aspects dealing with ozone technology and its application are also presented.
Resumo:
A simple and more environmentally friendly method by combined spot test-diffuse reflectance spectroscopy for determining metoclopramide in pharmaceutical formulations is described. The method is based on the reaction between metoclopramide and p-dimethylaminocinnamaldehyde, in the presence of HCl, producing a colored compound (λmáx = 580 nm) on the filter paper. The linear range was from 5.65 x 10-4-6.21x10-3 mol L-1 (r = 0.999). The limit of detection was 1.27 x 10-4 mol L-1. The proposed reflectometric method was applied successfully to the determination of metoclopramide in pharmaceuticals and it was favorably compared with the Brazilian or British Pharmacopoeia methods at 95% confidence level.
Resumo:
This review reports the use of solid amalgam electrodes in the electroanalytical determination of organic and inorganic compounds. The different types of amalgam electrodes are presented, and attention is paid to solid amalgam electrode, and here is presented details about the pre-treatment for activation and renovation and also possible modifications in its surface. The wide potential range, higher signal-to-noise ratio, mechanical stability enabling their application in flowing systems, and principally their resistance toward passivation, indicate that the solid amalgam electrodes are environmentally friendly alternatives to mercury electrodes, without loss in the sensitivity and reproducibility in voltammetric responses.
Resumo:
Silica obtained from rice husk after acid leaching and calcination was compared to commercial silica as a catalyst support. CaO and SnO2 catalysts were prepared by impregnation and tested in the transesterification of soybean oil and the esterification of oleic acid. CaO catalysts showed basic character and were the most active for transesterification, whereas SnO2 catalysts were acid and the most effective for esterification. In both cases the performances of the catalysts prepared with rice husk ash and commercial silica were similar. These results demonstrate that rice husk is a cost-effective and environmentally-friendly source of silica that can be used as a catalyst support.
Resumo:
This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.
Resumo:
Effluents containing toxic metals are dangerous and more economical, efficient and environmentally friendly treatments must be studied, with the biosorption process with microbial biomass constituting an efficient solution. Thus, the ability of Spirulina platensis biomass for removing chromium (VI) using passive and active biosorption was evaluated. Inactive microalgae biomass and synthetic solution containing chromium (VI) were used to evaluate important factors in the process and biomass biosorption ability. Results of the experiments showed that microalgae have potential for biosorption of chromium (VI), attaining removal of 100.39 mg g-1, and that pH was the variable with the greatest influence on the process.
Resumo:
The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country.
Resumo:
We propose an analytical method based on fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy to detect the adulteration of petrodiesel and petrodiesel/palm biodiesel blends with African crude palm oil. The infrared spectral fingerprints from the sample analysis were used to perform principal components analysis (PCA) and to construct a prediction model using partial least squares (PLS) regression. The PCA results separated the samples into three groups, allowing identification of those subjected to adulteration with palm oil. The obtained model shows a good predictive capacity for determining the concentration of palm oil in petrodiesel/biodiesel blends. Advantages of the proposed method include cost-effectiveness and speed; it is also environmentally friendly.
Resumo:
Activated carbon was produced from the water hyacinth (CAA) by impregnation with ZnCl2 (1:2), followed by pyrolysis at 700 ºC, under N2. CAA was used for the adsorption of phenol, m-cresol and o-cresol from aqueous solutions, using batch adsorption. The effects of contact time, pH, temperature and concentration on sorption were investigated. Adsorption capacity, calculated using the Langmuir model proved to be dependent on temperature, reaching values of 163.7, 130.2 and 142.3 mg g-1 for phenol, m-cresol and o-cresol, respectively, at 45 ºC. Thermodynamic data at the solid-liquid interface suggests an endothermic, spontaneous and environmentally-friendly process.
Resumo:
Due to the need for more efficient, economical and environmentally-friendly technological processes, the use of enzymes has increased. However, reuse of enzymatic hydrolytic complex is required. The immobilization of enzymes provides a basis for stability and allows their reuse reflected in aspects of economic feasibility. Magnetic nanoparticles are a promising supports since their magnetic character allows retrieval by applying an external magnetic field. This article presents an analysis and discussion of methods of biocatalyst immobilization, emphasizing lignocellulolytic enzymes immobilized in magnetic nanoparticles and their applications for the production of high-value compounds such as bioethanol.
Resumo:
A new analytical approach was developed involving cloud point extraction (CPE) and spectrofluorimetric determination of triamterene (TM) in biological fluids. A urine or plasma sample was prepared and adjusted to pH 7, then TM was quickly extracted using CPE, using 0.05% (w/v) of Triton X-114 as the extractant. The main factors that affected the extraction efficiency (the pH of the sample, the Triton X-114 concentration, the addition of salt, the extraction time and temperature, and the centrifugation time and speed) were studied and optimized. The method gave calibration curves for TM with good linearities and correlation coefficients (r) higher than 0.99. The method showed good precision and accuracy, with intra- and inter-assay precisions of less than 8.50% at all concentrations. Standard addition recovery tests were carried out, and the recoveries ranged from 94.7% to 114%. The limits of detection and quantification were 3.90 and 11.7 µg L-1, respectively, for urine and 5.80 and 18.0 µg L-1, respectively, for plasma. The newly developed, environmentally friendly method was successfully used to extract and determine TM in human urine samples.