989 resultados para Environmental Pollutants
Resumo:
Une des meilleures techniques pour décontaminer l'environnement d'éléments toxiques (comme par exemple le dibenzofuan, DBF et le 4-chlorophenol, 4CP) déposés par l'homme, à bas coûts et sans le perturber considérablement, est sans doute la biorémédiation, et particulièrement la bioaugmentation. Malheureusement, si plusieurs microorganismes ont démontré leur efficacité à dégrader les composés toxiques en conditions de laboratoire, plusieurs tentatives afin de les utiliser dans l'environnement n'ont pas abouti. Ces échecs sont probablement le résultat des pauvres connaissances des réactions de ces mêmes microorganismes dans l'environnement. L'objectif de mon travail a été de mieux comprendre les réponses de ces bactéries au niveau de leurs gènes lorsqu'elles sont introduites ou prospèrent dans des conditions plus proches de la réalité, mais encore suffisamment contrôlées pour pouvoir élucider leur comportement. Le fait de résister à des conditions de sécheresse a été considéré en tant que facteur clé dans la survie des bactéries amenées à être utilisées pour la biorémédiation; cela implique une série de mécanismes utilisés par la cellule pour faire face au stress hydrique. Le chapitre II, par une approche métagénomique, compare les réactions de trois souches prometteuses pour la biorémédiation (Arthrobacter chlorophenolicus A6, Sphingomonas wittichii RW1 and Pseudomonas veronii 1YdBTEX2) vis-à-vis du stress hydrique simulé en conditions de laboratoire. L'objectif ici est de découvrir et de décrire les stratégies de résistance au stress, communes ou spécifiques, employées par les bactéries. Mes résultats montrent que les trois souches ont des sensibilités différentes au stress hydrique. Entre les traits communs trouvés, il y a une diminution de l'expression des gènes flagellaires ainsi qu'une augmentation de l'expression de solutes compatibles, mais qui sont souche-spécifiques. J'ai étudié plus en détail la réponse génomique de RW1 par rapport aux inoculations ainsi que sa croissance dans le sable contaminé et non-stérile (chapitre III), et je les ai comparé à des cultures en milieu liquide. Mes résultats indiquent que RW1 peut résister efficacement et peut croître dans des conditions presque sèches et peut également dégrader le contaminant (DBF, dans le cas présent) si les pré-cultures sont réalisées dans le même type de contaminant. Par contre, notre hypothèse du chapitre II se révèle fausse car le comportement de RW1 est très diffèrent de celui observé dans des conditions avec stress hydrique induit par l'addition de sel ou de PEG. Plus intéressant, les réponses de RW1 en milieu liquide sont très différentes de celles observées dans le sable, révélant ainsi que cette souche peut reconnaître le milieu dans lequel elle se trouve. Les mêmes expériences en sable contaminé, cette fois-ci avec 4CP, ont été réalisées pour A6 (chapitre IV) dans l'espoir de compléter la comparaison entre le stress hydrique et l'adaptation dans le sol. Malheureusement, il n'a pas été possible d'obtenir d'échantillons de bonne qualité pour les hybridations des microarrays afin d'étudier la réponse transcriptionnelle dans les différentes phases de croissance dans le sable (contaminé ou non). Toutefois, j'ai appris qu'Arthrobacter ne peut pas croitre dans les sols hautement contaminés si les conditions du sol sont très sèches, elles ont en effet besoin de suffisamment d'eau pour dégrader des quantités importantes de 4CP. Ces observations dirigent l'attention sur le fait que les études sur l'efficacité de l'inoculation de bactéries doivent être testées dans des conditions le plus proche possible de l'environnement ciblé, tout comme les concentrations optimales pour l'inoculum. Finalement, nous avons étudié le comportement de A6 dans la phytosphère avec deux dégrés d'humidité (chapitre V). A6 ne montre pas de réaction particulière face aux changements d'humidité, et à nouveau, ces réponses ne peuvent être liées aux changements d'expression des gènes observées dans les conditions de stress hydrique simulées. Cette étude a permis d'identifier la présence de composés phénoliques dans les feuilles qui peuvent potentiellement améliorer les propriétés de dégradation ou qui permettent d'effectuer de façon plus rapide la réaction de dégradation des contaminants dans un processus de phytoremédiation par A. chlorophenolicus.
Resumo:
Herbicides are becoming emergent contaminants in Italian surface, coastal and ground waters, due to their intensive use in agriculture. In marine environments herbicides have adverse effects on non-target organisms, as primary producers, resulting in oxygen depletion and decreased primary productivity. Alterations of species composition in algal communities can also occur due to the different sensitivity among the species. In the present thesis the effects of herbicides, widely used in the Northern Adriatic Sea, on different algal species were studied. The main goal of this work was to study the influence of temperature on algal growth in the presence of the triazinic herbicide terbuthylazine (TBA), and the cellular responses adopted to counteract the toxic effects of the pollutant (Chapter 1 and 2). The development of simulation models to be applied in environmental management are needed to organize and track information in a way that would not be possible otherwise and simulate an ecological prospective. The data collected from laboratory experiments were used to simulate algal responses to the TBA exposure at increasing temperature conditions (Chapter 3). Part of the thesis was conducted in foreign countries. The work presented in Chapter 4 was focused on the effect of high light on growth, toxicity and mixotrophy of the ichtyotoxic species Prymnesium parvum. In addition, a mesocosm experiment was conducted in order to study the synergic effect of the pollutant emamectin benzoate with other anthropogenic stressors, such as oil pollution and induced phytoplankton blooms (Chapter 5).
Resumo:
The efficacy of waste stabilization lagoons for the treatment of five priority pollutants and two widely used commercial compounds was evaluated in laboratory model ponds. Three ponds were designed to simulate a primary anaerobic lagoon, a secondary facultative lagoon, and a tertiary aerobic lagoon. Biodegradation, volatilization, and sorption losses were quantified for bis(2-chloroethyl) ether, benzene, toluene, naphthalene, phenanthrene, ethylene glycol, and ethylene glycol monoethyl ether. A statistical model using a log normal transformation indicated biodegradation of bis(2-chloroethyl) ether followed first-order kinetics. Additionally, multiple regression analysis indicated biochemical oxygen demand was the water quality variable most highly correlated with bis(2-chloroethyl) ether effluent concentration. ^
Resumo:
A comprehensive investigation of sensitive ecosystems in South Florida with the main goal of determining the identity, spatial distribution, and sources of both organic biocides and trace elements in different environmental compartments is reported. This study presents the development and validation of a fractionation and isolation method of twelve polar acidic herbicides commonly applied in the vicinity of the study areas, including e.g. 2,4-D, MCPA, dichlorprop, mecroprop, picloram in surface water. Solid phase extraction (SPE) was used to isolate the analytes from abiotic matrices containing large amounts of dissolved organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-) in a Quadrupole Ion Trap mass spectrometer was used to perform the characterization of the herbicides of interest. ^ The application of Laser Ablation-ICP-MS methodology in the analysis of soils and sediments is reported in this study. The analytical performance of the method was evaluated on certified standards and real soil and sediment samples. Residential soils were analyzed to evaluate feasibility of using the powerful technique as a routine and rapid method to monitor potential contaminated sites. Forty eight sediments were also collected from semi pristine areas in South Florida to conduct screening of baseline levels of bioavailable elements in support of risk evaluation. The LA-ICP-MS data were used to perform a statistical evaluation of the elemental composition as a tool for environmental forensics. ^ A LA-ICP-MS protocol was also developed and optimized for the elemental analysis of a wide range of elements in polymeric filters containing atmospheric dust. A quantitative strategy based on internal and external standards allowed for a rapid determination of airborne trace elements in filters containing both contemporary African dust and local dust emissions. These distributions were used to qualitative and quantitative assess differences of composition and to establish provenance and fluxes to protected regional ecosystems such as coral reefs and national parks. ^
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.
Resumo:
A comprehensive investigation of sensitive ecosystems in South Florida with the main goal of determining the identity, spatial distribution, and sources of both organic biocides and trace elements in different environmental compartments is reported. This study presents the development and validation of a fractionation and isolation method of twelve polar acidic herbicides commonly applied in the vicinity of the study areas, including e.g. 2,4-D, MCPA, dichlorprop, mecroprop, picloram in surface water. Solid phase extraction (SPE) was used to isolate the analytes from abiotic matrices containing large amounts of dissolved organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-) in a Quadrupole Ion Trap mass spectrometer was used to perform the characterization of the herbicides of interest. The application of Laser Ablation-ICP-MS methodology in the analysis of soils and sediments is reported in this study. The analytical performance of the method was evaluated on certified standards and real soil and sediment samples. Residential soils were analyzed to evaluate feasibility of using the powerful technique as a routine and rapid method to monitor potential contaminated sites. Forty eight sediments were also collected from semi pristine areas in South Florida to conduct screening of baseline levels of bioavailable elements in support of risk evaluation. The LA-ICP-MS data were used to perform a statistical evaluation of the elemental composition as a tool for environmental forensics. A LA-ICP-MS protocol was also developed and optimized for the elemental analysis of a wide range of elements in polymeric filters containing atmospheric dust. A quantitative strategy based on internal and external standards allowed for a rapid determination of airborne trace elements in filters containing both contemporary African dust and local dust emissions. These distributions were used to qualitative and quantitative assess differences of composition and to establish provenance and fluxes to protected regional ecosystems such as coral reefs and national parks.
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.
Resumo:
Objectives: Air-pollution exposure has been associated with increased cardiovascular hospital admissions and mortality in time-series studies. We evaluated the relation between air pollutants and emergency room (ER) visits because of cardiac arrhythmia in a cardiology hospital. Methods: In a time-series study, we evaluated the association between the emergency room visits as a result of cardiac arrhythmia and daily variations in SO2, CO, NO2, O-3 and PM10, from January 1998 to August 1999. The cases of arrhythmia were modelled using generalised linear Poisson regression models, controlling for seasonality (short-term and long-term trend), and weather. Results: Interquartile range increases in CO (1.5 ppm), NO2 (49,5 mu g/m(3)) and PM10 (22.2 mu g/m(3)) on the concurrent day were associated with increases of 12.3% (95% CI: 7.6% to 17.2%), 10.4% (95% CI: 5.2% to 15.9%) and 6.7% (95% CI: 1.2% to 12.4%) in arrhythmia ER visits, respectively. PM10, CO and NO2 effects were dose-dependent and gaseous pollutants had thresholds. Only CO effect resisted estimates in models with more than one pollutant. Conclusions: Our results showed that air pollutant effects on arrhythmia are predominantly acute starting at concentrations below air quality standards, and the association with CO and NO2 suggests a relevant role for pollution caused by cars.
Resumo:
The kinetics and mechanism of the thermal activation of peroxydisulfate, in the temperature range from 60 to 80 degrees C, was investigated in the presence and absence of sodium formate as an additive to turn the oxidizing capacity of the reaction mixture into a reductive one. Trichloroacetic acid, TCA, whose degradation by a reductive mechanism is well reported in the literature, was used as a probe. The chemistry of thermally activated peroxydisulfate is described by a reaction scheme involving free radical generation. The proposed mechanism is evaluated by a computer simulation of the concentration profiles obtained under different experimental conditions. In the presence of formate, SO(4)(center dot-) radicals yield CO(2)(center dot-), which are the main species available for degrading TCA. Under the latter conditions, TCA is more efficiently depleted than in the absence of formate, but otherwise identical conditions of temperature and [S(2)O(8)(2-)]. We therefore conclude that activated peroxydisulfate in the presence of formate as an additive is a convenient method for the mineralization of substrates that are refractory to oxidation. such as perchlorinated hydrocarbons and TCA. This method has the advantage that leaves no toxic residues. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Canoparmelia texana epiphytic lichenized fungi was used to monitor atmospheric pollution in the Sao Paulo metropolitan region, SP, Brazil. The cluster analysis applied to the element concentration values confirmed the site groups of different levels of pollution due to industrial and vehicular emissions. In the distribution maps of element concentrations, higher concentrations of Ba and Mn were observed in the vicinity of industries and of a petrochemical complex. The highest concentration of Co found in lichens from the Sao Miguel Paulista site is due to the emissions from a metallurgical processing plant that produces this element. For Br and Zn, the highest concentrations could be associated both to vehicular and industrial emissions. Exploratory analyses revealed that the accumulation of toxic elements in C. texana may be of use in evaluating the human risk of cardiopulmonary mortality due to prolonged exposure to ambient levels of air pollution. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Total particulate matter (TPM) was passively collected inside two classrooms of each of five elementary schools in Lisbon, Portugal. TPM was collected in polycarbonate filters with a 47 mm diameter, placed inside of uncovered plastic petri dishes. The sampling period was from 19 May to 22 June 2009 (35 days exposure) and the collected TPM masses varied between 0.2 mg and 0.8 mg. The major elements were Ca, Fe, Na, K, and Zn at μg level, while others were at ng level. Pearson′s correlation coefficients above 0.75 (a high degree of correlation) were found between several elements. Soil-related, traffic soil re-suspension and anthropogenic emission sources could be identified. Blackboard chalk was also identified through Ca large presence. Some of the determined chemical elements are potential carcinogenic. Quality control of the results showed good agreement as confirmed by the application of u-score test.