868 resultados para Energy storage device


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The number of autonomous wireless sensor and control nodes has been increasing rapidly during the last decade. Until recently, these wireless nodes have been powered with batteries, which have lead to a short life cycle and high maintenance need. Due to these battery-related problems, new energy sources have been studied to power wireless nodes. One solution is energy harvesting, i.e. extracting energy from the ambient environment. Energy harvesting can provide a long-lasting power source for sensor nodes, with no need for maintenance. In this thesis, various energy harvesting technologies are studied whilst focusing on the theory of each technology and the state-of-the-art solutions of published studies and commercial solutions. In addition to energy harvesting, energy storage and energy management solutions are also studied as a subsystem of a whole energy source solution. Wireless nodes are also used in heavy-duty vehicles. Therefore a reliable, long-lasting and maintenance-free power source is also needed in this kind of environment. A forestry harvester has been used as a case study to study the feasibility of energy harvesting in a forestry harvester’s sliding boom. The energy harvester should be able to produce few milliwatts to power the target system, an independent limit switch.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The power demand of many mobile working machines such as mine loaders, straddle carriers and harvesters varies significantly during operation, and typically, the average power demand of a working machine is considerably lower than the demand for maximum power. Consequently, for most of the time, the diesel engine of a working machine operates at a poor efficiency far from its optimum efficiency range. However, the energy efficiency of dieseldriven working machines can be improved by electric hybridization. This way, the diesel engine can be dimensioned to operate within its optimum efficiency range, and the electric drive with its energy storages responds to changes in machine loading. A hybrid working machine can be implemented in many ways either as a parallel hybrid, a series hybrid or a combination of these two. The energy efficiency of hybrid working machines can be further enhanced by energy recovery and reuse. This doctoral thesis introduces the component models required in the simulation model of a working machine. Component efficiency maps are applied to the modelling; the efficiency maps for electrical machines are determined analytically in the whole torque–rotational speed plane based on the electricalmachine parameters. Furthermore, the thesis provides simulation models for parallel, series and parallel-series hybrid working machines. With these simulation models, the energy consumption of the working machine can be analysed. In addition, the hybridization process is introduced and described. The thesis provides a case example of the hybridization and dimensioning process of a working machine, starting from the work cycle of the machine. The selection and dimensioning of the hybrid system have a significant impact on the energy consumption of a hybrid working machine. The thesis compares the energy consumption of a working machine implemented by three different hybrid systems (parallel, series and parallel-series) and with different component dimensions. The payback time of a hybrid working machine and the energy storage lifetime are also estimated in the study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high-frequency cyclonverter acts as a direct ac-to-ac power converter circuit that does not require a diode bidge rectifier. Bridgeless topology makes it possible to remove forward voltage drop losses that are present in a diode bridge. In addition, the on-state losses can be reduced to 1.5 times the on-state resistance of switches in half-bridge operation of the cycloconverter. A high-frequency cycloconverter is reviewed and the charging effect of the dc-capacitors in ``back-to-back'' or synchronous mode operation operation is analyzed. In addition, a control method is introduced for regulating dc-voltage of the ac-side capacitors in synchronous operation mode. The controller regulates the dc-capacitors and prevents switches from reaching overvoltage level. This can be accomplished by variating phase-shift between the upper and the lower gate signals. By adding phase-shift between the gate signal pairs, the charge stored in the energy storage capacitors can be discharged through the resonant load and substantially, the output resonant current amplitude can be improved. The above goals are analyzed and illustrated with simulation. Theory is supported with practical measurements where the proposed control method is implemented in an FPGA device and tested with a high-frequency cycloconverter using super-junction power MOSFETs as switching devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Thesis is dedicated to development of an operative tool to support decision making of battery energy storages implementation in distribution networks. The basics of various battery technologies, their perspectives and challenges are represented in the Thesis. Mathematical equations that describe economic effect from battery energy storage installation are offered. The main factors that influence profitability of battery settings have been explored and mathematically defined. Mathematical model and principal trends of battery storage profitability under an impact of the major factors are determined. The meaning of annual net value was introduced to show the difference between savings and required costs. The model gives a clear vision for dependencies between annual net value and main factors. Proposals for optimal network and battery characteristics are suggested.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is done as a part of the NEOCARBON project. The aim of NEOCARBON project is to study a fully renewable energy system utilizing Power-to-Gas or Power-to-Liquid technology for energy storage. Power-to-Gas consists of two main operations: Hydrogen production via electrolysis and methane production via methanation. Methanation requires carbon dioxide and hydrogen as a raw material. This thesis studies the potential carbon dioxide sources within Finland. The different sources are ranked using the cost and energy penalty of the carbon capture, carbon biogenity and compatibility with Power-to-Gas. It can be concluded that in Finland there exists enough CO2 point sources to provide national PtG system with sufficient amounts of carbon. Pulp and paper industry is single largest producer of biogenic CO2 in Finland. It is possible to obtain single unit capable of grid balancing operations and energy transformations via Power-to-Gas and Gas-to-Power by coupling biogas plants with biomethanation and CHP units.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent developments in power electronics technology have made it possible to develop competitive and reliable low-voltage DC (LVDC) distribution networks. Further, islanded microgrids—isolated small-scale localized distribution networks— have been proposed to reliably supply power using distributed generations. However, islanded operations face many issues such as power quality, voltage regulation, network stability, and protection. In this thesis, an energy management system (EMS) that ensures efficient energy and power balancing and voltage regulation has been proposed for an LVDC island network utilizing solar panels for electricity production and lead-acid batteries for energy storage. The EMS uses the master/slave method with robust communication infrastructure to control the production, storage, and loads. The logical basis for the EMS operations has been established by proposing functionalities of the network components as well as by defining appropriate operation modes that encompass all situations. During loss-of-powersupply periods, load prioritizations and disconnections are employed to maintain the power supply to at least some loads. The proposed EMS ensures optimal energy balance in the network. A sizing method based on discrete-event simulations has also been proposed to obtain reliable capacities of the photovoltaic array and battery. In addition, an algorithm to determine the number of hours of electric power supply that can be guaranteed to the customers at any given location has been developed. The successful performances of all the proposed algorithms have been demonstrated by simulations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hybridiajoneuvosovellukset vaativat usein sekä korkea- että matalajännitejärjestelmän. Korkeajännitejärjestelmä sisältää yleensä energiavaraston, joka on joko superkondansaattori tai korkeajänniteakusto, dieselgeneraattorin tai range extenderin ja ajokäytön. Korkeajännitejärjestelmään liitetään usein myös erilaisia apukäyttöjä kuten kompressoreita ja hydraulipumppuja. Matalajännitejärjelmä koostuu yleensä ohjausyksiköistä, ajovaloista, yms. laitteista. Perinteisesti matalajännitejärjestelmää on syötetty dieselmoottorin laturista, mutta korkeajännitejärjestelmien myötä DC/DC-hakkurin käyttäminen korkea- ja matalajännitejärjestelmien välillä on herättänyt kiinnostusta, koska tällöin laturin voisi poistaa ja matalajänniteakustoa pienentää. Tässä työssä kuvatun monilähöisen tehonmuokkaimen invertterisilta soveltuu apukäyttöjen ajamiseen, ja erotettu DC/DC-hakkuri matalajännitejärjestelmän syöttämiseen. Tässä työssä käydään läpi edellä mainitun tehonmuokkaimen suunnittelu, keskittyen eritoten laitteen korkeajänniteosien mitoitukseen ja termiseen suunniteluun. DC/DC-hakkurin osalta perinteisiä piistä valmistettuja IGBT transistoreja vertaillaan piikarbidi MOSFET transistoreihin. Lämpömallilaskujen paikkaansapitävyyttä tutkitaan suorittamalla prototyyppilaitteelle hyötysuhdemittaus, jonka tuloksia verrataan laskettuihin tuloksiin. Lämpömallin parannusmahdollisuuksia käsitellään myös hyötysuhdemittauksen tulosten perusteella.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Almost all the electricity currently produced in the UK is generated as part of a centralised power system designed around large fossil fuel or nuclear power stations. This power system is robust and reliable but the efficiency of power generation is low, resulting in large quantities of waste heat. The principal aim of this paper is to investigate an alternative concept: the energy production by small scale generators in close proximity to the energy users, integrated into microgrids. Microgrids—de-centralised electricity generation combined with on-site production of heat—bear the promise of substantial environmental benefits, brought about by a higher energy efficiency and by facilitating the integration of renewable sources such as photovoltaic arrays or wind turbines. By virtue of good match between generation and load, microgrids have a low impact on the electricity network, despite a potentially significant level of generation by intermittent energy sources. The paper discusses the technical and economic issues associated with this novel concept, giving an overview of the generator technologies, the current regulatory framework in the UK, and the barriers that have to be overcome if microgrids are to make a major contribution to the UK energy supply. The focus of this study is a microgrid of domestic users powered by small Combined Heat and Power generators and photovoltaics. Focusing on the energy balance between the generation and load, it is found that the optimum combination of the generators in the microgrid- consisting of around 1.4 kWp PV array per household and 45% household ownership of micro-CHP generators- will maintain energy balance on a yearly basis if supplemented by energy storage of 2.7 kWh per household. We find that there is no fundamental technological reason why microgrids cannot contribute an appreciable part of the UK energy demand. Indeed, an estimate of cost indicates that the microgrids considered in this study would supply electricity at a cost comparable with the present electricity supply if the current support mechanisms for photovoltaics were maintained. Combining photovoltaics and micro-CHP and a small battery requirement gives a microgrid that is independent of the national electricity network. In the short term, this has particular benefits for remote communities but more wide-ranging possibilities open up in the medium to long term. Microgrids could meet the need to replace current generation nuclear and coal fired power stations, greatly reducing the demand on the transmission and distribution network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Summary 1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests. Keywords: bioenergetics; energy budget; individual-based models; population dynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy storage is a potential alternative to conventional network reinforcementof the low voltage (LV) distribution network to ensure the grid’s infrastructure remainswithin its operating constraints. This paper presents a study on the control of such storagedevices, owned by distribution network operators. A deterministic model predictive control (MPC) controller and a stochastic receding horizon controller (SRHC) are presented, wherethe objective is to achieve the greatest peak reduction in demand, for a given storagedevice specification, taking into account the high level of uncertainty in the prediction of LV demand. The algorithms presented in this paper are compared to a standard set-pointcontroller and bench marked against a control algorithm with a perfect forecast. A specificcase study, using storage on the LV network, is presented, and the results of each algorithmare compared. A comprehensive analysis is then carried out simulating a large number of LV networks of varying numbers of households. The results show that the performance of each algorithm is dependent on the number of aggregated households. However, on a typical aggregation, the novel SRHC algorithm presented in this paper is shown to outperform each of the comparable storage control techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reinforcing the Low Voltage (LV) distribution network will become essential to ensure it remains within its operating constraints as demand on the network increases. The deployment of energy storage in the distribution network provides an alternative to conventional reinforcement. This paper presents a control methodology for energy storage to reduce peak demand in a distribution network based on day-ahead demand forecasts and historical demand data. The control methodology pre-processes the forecast data prior to a planning phase to build in resilience to the inevitable errors between the forecasted and actual demand. The algorithm uses no real time adjustment so has an economical advantage over traditional storage control algorithms. Results show that peak demand on a single phase of a feeder can be reduced even when there are differences between the forecasted and the actual demand. In particular, results are presented that demonstrate when the algorithm is applied to a large number of single phase demand aggregations that it is possible to identify which of these aggregations are the most suitable candidates for the control methodology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Universal Serial Bus (USB) Mass Storage Device (MSD), often termed a USB flash drive, is ubiquitously used to store important information in unencrypted binary format. This low cost consumer device is incredibly popular due to its size, large storage capacity and relatively high transfer speed. However, if the device is lost or stolen an unauthorized person can easily retrieve all the information. Therefore, it is advantageous in many applications to provide security protection so that only authorized users can access the stored information. In order to provide security protection for a USB MSD, this paper proposes a session key agreement protocol after secure user authentication. The main aim of this protocol is to establish session key negotiation through which all the information retrieved, stored and transferred to the USB MSD is encrypted. This paper not only contributes an efficient protocol, but also does not suffer from the forgery attack and the password guessing attack as compared to other protocols in the literature. This paper analyses the security of the proposed protocol through a formal analysis which proves that the information is stored confidentially and is protected offering strong resilience to relevant security attacks. The computational cost and communication cost of the proposed scheme is analyzed and compared to related work to show that the proposed scheme has an improved tradeoff for computational cost, communication cost and security.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Energy efficiency and renewable energy use are two main priorities leading to industrial sustainability nowadays according to European Steel Technology Platform (ESTP). Modernization efforts can be done by industries to improve energy consumptions of the production lines. These days, steel making industrial applications are energy and emission intensive. It was estimated that over the past years, energy consumption and corresponding CO2 generation has increased steadily reaching approximately 338.15 parts per million in august 2010 [1]. These kinds of facts and statistics have introduced a lot of room for improvement in energy efficiency for industrial applications through modernization and use of renewable energy sources such as solar Photovoltaic Systems (PV).The purpose of this thesis work is to make a preliminary design and simulation of the solar photovoltaic system which would attempt to cover the energy demand of the initial part of the pickling line hydraulic system at the SSAB steel plant. For this purpose, the energy consumptions of this hydraulic system would be studied and evaluated and a general analysis of the hydraulic and control components performance would be done which would yield a proper set of guidelines contributing towards future energy savings. The results of the energy efficiency analysis showed that the initial part of the pickling line hydraulic system worked with a low efficiency of 3.3%. Results of general analysis showed that hydraulic accumulators of 650 liter size should be used by the initial part pickling line system in combination with a one pump delivery of 100 l/min. Based on this, one PV system can deliver energy to an AC motor-pump set covering 17.6% of total energy and another PV system can supply a DC hydraulic pump substituting 26.7% of the demand. The first system used 290 m2 area of the roof and was sized as 40 kWp, the second used 109 m2 and was sized as 15.2 kWp. It was concluded that the reason for the low efficiency was the oversized design of the system. Incremental modernization efforts could help to improve the hydraulic system energy efficiency and make the design of the solar photovoltaic system realistically possible. Two types of PV systems where analyzed in the thesis work. A method was found calculating the load simulation sequence based on the energy efficiency studies to help in the PV system simulations. Hydraulic accumulators integrated into the pickling line worked as energy storage when being charged by the PV system as well.