963 resultados para Embryonic-development
Resumo:
The central point of this work is the investigation of neurogenesis in chelicerates and myriapods. By comparing decisive mechanisms in neurogenesis in the four arthropod groups (Chelicerata, Crustacea, Insecta, Myriapoda) I was able to show which of these mechanisms are conserved and which developmental modules have diverged. Thereby two processes of embryonic development of the central nervous system were brought into focus. On the one hand I studied early neurogenesis in the ventral nerve cord of the spiders Cupiennius salei and Achaearanea tepidariorum and the millipede Glomeris marginata and on the other hand the development of the brain in Cupiennius salei.rnWhile the nervous system of insects and crustaceans is formed by the progeny of single neural stem cells (neuroblasts), in chelicerates and myriapods whole groups of cells adopt the neural cell fate and give rise to the ventral nerve cord after their invagination. The detailed comparison of the positions and the number of the neural precursor groups within the neuromeres in chelicerates and myriapods showed that the pattern is almost identical which suggests that the neural precursors groups in these arthropod groups are homologous. This pattern is also very similar to the neuroblast pattern in insects. This raises the question if the mechanisms that confer regional identity to the neural precursors is conserved in arthropods although the mode of neural precursor formation is different. The analysis of the functions and expression patterns of genes which are known to be involved in this mechanism in Drosophila melanogaster showed that neural patterning is highly conserved in arthropods. But I also discovered differences in early neurogenesis which reflect modifications and adaptations in the development of the nervous systems in the different arthropod groups.rnThe embryonic development of the brain in chelicerates which was investigated for the first time in this work shows similarities but also some modifications to insects. In vertebrates and arthropods the adult brain is composed of distinct centres with different functions. Investigating how these centres, which are organised in smaller compartments, develop during embryogenesis was part of this work. By tracing the morphogenetic movements and analysing marker gene expressions I could show the formation of the visual brain centres from the single-layered precheliceral neuroectoderm. The optic ganglia, the mushroom bodies and the arcuate body (central body) are formed by large invaginations in the peripheral precheliceral neuroectoderm. This epithelium itself contains neural precursor groups which are assigned to the respective centres and thereby build the three-dimensional optical centres. The single neural precursor groups are distinguishable during this process leading to the assumption that they carry positional information which might subdivide the individual brain centres into smaller functional compartments.rn
Resumo:
Fgfrl1 is a novel member of the fibroblast growth factor receptor family. Its extracellular domain resembles the four conventional Fgfrs, while its intracellular domain lacks the tyrosine kinase domain necessary for Fgf mediated signal transduction. During embryonic development Fgfrl1 is expressed in the musculoskeletal system, in the lung, the pancreas and the metanephric kidney. Targeted disruption of the Fgfrl1 gene leads to the perinatal death of the mice due to a hypoplastic diaphragm, which is unable to inflate the lungs. Here we show that Fgfrl1-/- embryos also fail to develop the metanephric kidney. While the rest of the urogenital system, including bladder, ureter and sexual organs, develops normally, a dramatic reduction of ureteric branching morphogenesis and a lack of mesenchymal-to-epithelial transition in the nephrogenic mesenchyme result in severe renal dysgenesis. The failure of nephron induction might be explained by the absence of the tubulogenic markers Wnt4, Fgf8, Pax8 and Lim1 at E12.5 of the mutant animals. We also observed a loss of Pax2 positive nephron precursor cells and an increase of apoptosis in the cortical zone of the remnant kidney. Fgfrl1 is therefore essential for mesenchymal differentiation in the early steps of nephrogenesis.
Resumo:
Wilms tumor (WT) is a childhood tumor of the kidney and a productive model for understanding the role of genetic alteration and interactions in tumorigenesis. The Wilms tumor gene 1 (WT1) is a transcriptional factor and one of the few genes known to have genetic alterations in WT and has been shown be inactivated in 20% of WTs. However, the mechanisms of how WT1 mutations lead to Wilms tumorigenesis and its influence on downstream genes are unknown. Since it has been established that WT1 is a transcriptional regulator, it has been hypothesized that the loss of WT1 leads to the dysregulation of downstream genes, in turn result in the formation of WTs. To identify the dysregulated downstream genes following WT1 mutations, an Affymetrix GeneChip Human Genome Array was previously conducted to assess the differentially expressed genes in the WT1-wildtype human and WT1-mutant human WTs. Approximately 700 genes were identified as being significantly dysregulated. These genes were further prioritized based on their statistical significance, fold change, chromosomal region, spatial pattern of gene expression and known or putative cellular functions. Mesenchyme homeobox 2 (MEOX2) was one of the most significantly upregulated genes in WT1-mutant WT. MEOX2 is known to play a role in cell proliferation, apoptosis, and differentiation. In addition to its biological roles, it is expressed during early kidney development in the condensed mesenchyme similar to WT1. Furthermore, the use of the Match® web-based tool from the BIOBASE Biological Data base identified a significant predicted WT1 binding site within the first intron of MEOX2. The similarity in spatial gene expression in the developing kidney and the significant predicted WT1 binding site found in the first intron of MEOX2 lead to the development of my hypothesis that MEOX2 is upregulated via a WT1-dependent manner. Here as a part of my master’s work, I have validated the Affymetrix GeneChip Human Genome Array data using an independent set of Wilms tumors. MEOX2 remained upregulated in the mutant WT1 Wilms tumor by 41-fold. Wt1 and Meox2 gene expression were assessed in murine newborn kidney; both Wt1 and Meox2 were expressed in the condensed, undifferentiated metanephric mesenchyme. I have shown that the in vivo ablation of Wt1 during embryonic development at embryonic day (E) 13.5 resulted in the slight increase of Meox2 gene expression by two fold. In order to functionally demonstrate the effect of the loss of Wt1 on Meox2 gene expression in undifferentiated metanephric mesenchyme, I have generated a kidney mesenchymal cell line to genetically ablate Wt1 in vitro by adenoviral infection. The ablation of Wt1 in the kidney mesenchymal cell line resulted in the upregulation of Meox2 by 61-fold. Moreover, the upregulation of Meox2 resulted in the significant induction of p21 and Itgb5. In addition to the dysregulation of these genes the ablation of Wt1 in the kidney mesenchymal cells resulted in decrease in cell growth and loss of cellular adherence. However, it is uncertain whether the upregulation of Meox2 caused this particular cellular phenotype. Overall, I have demonstrated that the upregulation of Meox2 is Wt1-dependent during early kidney development.
Resumo:
Cell differentiation are associated with activation of cell lineage-specific genes. The $LpS{\it 1}\beta$ gene of Lytechinus pictus is activated at the late cleavage stage. $LpS{\it 1}\beta$ transcripts accumulate exclusively in aboral ectoderm lineages. Previous studies demonstrated two G-string DNA-elements, proximal and distal G-strings, which bind to an ectoderm-enriched nuclear factor. In order to define the cis-elements which control positive expression of the $LpS{\it 1}\beta$ gene, the regulatory region from $-$108 to +17 bp of the $LpS{\it 1}\beta$ gene promoter was characterized. The ectoderm G-string factor binds to a G/C-rich region larger than the G-string itself and the binding of the G-string factor requires sequences immediately downstream from the G-string. These downstream sequences are essential for full promoter activity. In addition, only 108 bp of $LpS{\it 1}\beta\ 5\sp\prime$ flanking DNA drives $LpS{\it 1}\beta$ gene expression in aboral ectoderm/mesenchyme cells. Therefore, for positive control of $LpS{\it 1}\beta$ gene expression, two regions of 5$\sp\prime$ flanking DNA are required: region I from base pairs $-$762 to $-$511, and region II, which includes the G/C-rich element, from base pairs $-$108 to $-$61. A mesenchyme cell repressor element is located within region I.^ DNA-binding proteins play key roles in determination of cell differentiation. The zinc finger domain is a DNA-binding domain present in many transcription factors. Based on homologies in zinc fingers, a zinc finger-encoding gene, SpKrox-1, was cloned from S. purpuratus. The putative SpKrox-1 protein has all structural characteristics of a transcription factor: four zinc fingers for DNA binding; acidic domain for transactivation; basic domain for nuclear targeting; and leucine zipper for dimerization. SpKrox-1 RNA transcripts showed a transient expression pattern which correlates largely with early embryonic development. The spatial expression of SpKrox-1 mRNA was distributed throughout the gastrula and larva ectodermal wall. However, SpKrox-1 was not expressed in pigment cells. The SpKrox-1 gene is thus a marker of a subset of SMCs or ectoderm cells. The structural features, and the transient temporal and restricted spatial expression patterns suggest that SpKrox-1 plays a role in a specific developmental event. ^
Resumo:
Memo is a conserved protein that was identified as an essential mediator of tumor cell motility induced by receptor tyrosine kinase activation. Here we show that Memo null mouse embryonic fibroblasts (MEFs) are impaired in PDGF-induced migration and this is due to a defect in sphingosine-1-phosphate (S1P) signaling. S1P is a bioactive phospholipid produced in response to multiple stimuli, which regulates many cellular processes. S1P is secreted to the extracellular milieu where it exerts its function by binding a family of G-protein coupled receptors (S1PRs), causing their activation in an autocrine or paracrine manner. The process, termed cell-autonomous S1PR signaling, plays a role in survival and migration. Indeed, PDGF uses cell-autonomous S1PR signaling to promote cell migration; we show here that this S1P pathway requires Memo. Using vascular endothelial cells (HUVECs) with Memo knock-down we show that their survival in conditions of serum-starvation is impaired. Furthermore, Memo loss in HUVECs causes a reduction of junctional VE-cadherin and an increase in sprout formation. Each of these phenotypes is rescued by S1P or S1P agonist addition, showing that Memo also plays an important role in cell-autonomous S1PR signaling in endothelial cells. We also produced conventional and endothelial cell-specific conditional Memo knock-out mouse strains and show that Memo is essential for embryonic development. Starting at E13.5 embryos of both strains display bleeding and other vascular problems, some of the phenotypes that have been described in mouse strains lacking S1PRs. The essential role of Memo in embryonic vascular development may be due in part to alterations in S1P signaling. Taken together our results show that Memo has a novel role in the S1P pathway and that Memo is needed to promote cell-autonomous S1PR activation.
Resumo:
FgfrL1, which interacts with Fgf ligands and heparin, is a member of the fibroblast growth factor receptor (Fgfr) family. FgfrL1-deficient mice show two significant alterations when compared to wildtype mice: They die at birth due to a malformed diaphragm and they lack metanephric kidneys. Utilizing gene arrays, qPCR and in situ hybridization we show here that the diaphragm of FgfrL1 knockout animals lacks any slow muscle fibers at E18.5 as indicated by the absence of slow fiber markers Myh7, Myl2 and Myl3. Similar lesions are also found in other skeletal muscles that contain a high proportion of slow fibers at birth, such as the extraocular muscles. In contrast to the slow fibers, fast fibers do not appear to be affected as shown by expression of fast fiber markers Myh3, Myh8, Myl1 and MylPF. At early developmental stages (E10.5, E15.5), FgfrL1-deficient animals express slow fiber genes at normal levels. The loss of slow fibers cannot be attributed to the lack of kidneys, since Wnt4 knockout mice, which also lack metanephric kidneys, show normal expression of Myh7, Myl2 and Myl3. Thus, FgfrL1 is specifically required for embryonic development of slow muscle fibers.
Resumo:
The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β-catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.
Resumo:
Notch signaling is important in angiogenesis during embryonic development. However, the embryonic lethal phenotypes of knock-out and transgenic mice have precluded studies of the role of Notch post-natally. To develop a mouse model that would bypass the embryonic lethal phenotype and investigate the possible role of Notch signaling in adult vessel growth, we developed transgenic mice with Cre-conditional expression of the constitutively active intracellular domain of Notch1 (IC-Notch1). Double transgenic IC-Notch1/Tie2-Cre embryos with endothelial specific IC-Notch1 expression died at embryonic day 9.5. They displayed collapsed and leaky blood vessels and defects in angiogenesis development. A tetracycline-inducible system was used to express Cre recombinase postnatally in endothelial cells. In adult mice, IC-Notch1 expression inhibited bFGF-induced neovascularization and female mice lacked mature ovarian follicles, which may reflect the block in bFGF-induced angiogenesis required for follicle growth. Our results demonstrate that Notch signaling is important for both embryonic and adult angiogenesis and indicate that the Notch signaling pathway may be a useful target for angiogenic therapies.
Resumo:
INTRODUCTION The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e(-/-) mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. METHODS Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e(-/-) mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. RESULTS Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e(-/-) mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e(-/-) cartilage explants. OA progression was significantly enhanced in the Tfap2e(-/-) mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e(-/-) articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. CONCLUSIONS We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.
Resumo:
Complex molecular events underlie vertebrate eye development and disease. The eye is composed of two major tissue types: the anterior and posterior segments. During development, the retinal progenitor cells differentiate into six neuronal and one non-neuronal cell types. These cell types later organize into the distinct laminar structure of the mature retina which occupies the posterior segment. In the developed anterior segment, both the ciliary body and trabecular meshwork regulate intraocular pressure created by the aqueous humor. The disruption in intraocular pressure can lead to a blinding condition called glaucoma. To characterize molecular mechanisms governing retinal development and glaucoma, two separate mouse knockout lines carrying mutations in math5 and myocilin were subjected to a series of in vivo analyses. ^ Math5 is a murine homologue of Drosophila atonal , a bHLH proneural gene essential for the formation of photoreceptor cells. The expression of math5 coincides with the onset of retinal ganglion cell differentiation. The targeted deletion of mouse math5 revealed that a null mutation inhibits the formation of a majority of the retinal ganglion cells. The mutation also interferes with the normal development of other retinal cell types such as amacrine, bipolar and photoreceptor cells. These results suggest that math5 is a proneural gene responsible for differentiation of retinal ganglion cells and may also have a role in normal development of other neuronal cell types within the retina. ^ Myocilin has two unique protein coding regions bearing homology to non-muscle myosin of Dictyostelium discoideum and to olfactomedin, an extracellular matrix molecule first described in the olfactory epithelium of the bullfrog. Recently, autosomal dominant forms of myocilin mutations have been found in individuals with primary open-angle glaucoma. The genetic linkage to glaucoma suggests a role of myocilin in normal intraocular pressure and ocular function. However, the analysis of mice heterozygous and homozygous for a targeted null mutation in myocilin indicates that it is dispensable for normal intraocular pressure or ocular function. Additionally, the lack of a discernable phenotype in both heterozygous and null mice suggests that haploinsufficiency is not a critical mechanism for MYOC-associated glaucoma in humans. Instead, disease-causing mutations likely act by gain of function. ^ In summary, these studies provide novel insights into the embryonic development of the vertebrate retina, and also begin to uncover the molecular mechanisms responsible for the pathogenesis of glaucoma. ^
Resumo:
Extracellular signaling pathways initiated by secreted proteins are important in the co-ordination of tissue interactions in multi-cellular organisms, particularly during embryonic development. These signaling cascades direct diverse cellular events, including proliferation, differentiation and migration, in both autocrine and paracrine modes. In adult animals, abnormal function of these proteins often results in degenerative and tumourigenic syndromes. In this study, I have focused on elucidating the role of Bone Morphogenetic Protein (Bmp) signal transduction during neuronal specification and differentiation in the vertebrate embryo, using the mouse retina as a model. Using tissue-specific conditional knock-out approaches, the consequences of genetic loss-of-function of this signaling pathway on retinal physiology were examined. Mutant mice lacking Bmp type I receptor function displayed a range of retinal phenotypes, each of which appeared to be regulated at a different threshold of Bmp receptor activity. Novel essential functions for Bmp signaling were uncovered for retinal neurogenesis, cell survival, and axonal pathfinding at the optic disc. Further, BmprIa and BmprIa exhibited genetic interactions suggestive of functional redundancy. To further characterize the underlying molecular bases for the pleiotropic effects of Bmp receptors, retina-specific loss-of-function mutants of the obligate Bmp-activated transcriptional mediator Smad4 were generated. A comparison of the retina-specific Smad4 mutant phenotypes with those of the Bmp receptor mutant retina revealed that only a subset of retinal phenotypes, namely optic disc axon pathfinding and axial patterning were common for both classes of mutant animals. Thus, these results suggest that, contrary to the classic scheme of Bmp signal transduction, Smad4-independent pathways may be operative downstream of the type I receptors. Indeed, such alternative intracellular signaling cascades may constitute a molecular basis for the multiple cellular responses elicited by Bmp signaling. Finally, I tested whether the potential Bmp pathway targets, the extracellular ligands Fgf9 and Fgf15, mediate essential cellular processes in the retina. The analyses of Fgf9 −/−; Fgf15−/− mutant mice posit a novel shared role for these genes in intra-retinal axon pathfinding. Collectively, these studies have elucidated part of the molecular machinery directing mammalian neuro-retinal development, and provided useful in vivo models to study visual function. ^
Resumo:
Transcriptional enhancers are genomic DNA sequences that contain clustered transcription factor (TF) binding sites. When combinations of TFs bind to enhancer sequences they act together with basal transcriptional machinery to regulate the timing, location and quantity of gene transcription. Elucidating the genetic mechanisms responsible for differential gene expression, including the role of enhancers, during embryological and postnatal development is essential to an understanding of evolutionary processes and disease etiology. Numerous methods are in use to identify and characterize enhancers. Several high-throughput methods generate large datasets of enhancer sequences with putative roles in embryonic development. However, few enhancers have been deleted from the genome to determine their roles in the development of specific structures, such as the limb. Manipulation of enhancers at their endogenous loci, such as the deletion of such elements, leads to a better understanding of the regulatory interactions, rules and complexities that contribute to faithful and variant gene transcription – the molecular genetic substrate of evolution and disease. To understand the endogenous roles of two distinct enhancers known to be active in the mouse embryo limb bud we deleted them from the mouse genome. I hypothesized that deletion of these enhancers would lead to aberrant limb development. The enhancers were selected because of their association with p300, a protein associated with active transcription, and because the human enhancer sequences drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. To confirm that the orthologous mouse enhancers, mouse 280 and 1442 (M280 and M1442, respectively), regulate expression in the developing limb we generated stable transgenic lines, and examined lacZ expression. In M280-lacZ mice, expression was detected in E11.5 fore- and hindlimbs in a region that corresponds to digits II-IV. M1442-lacZ mice exhibited lacZ expression in posterior and anterior margins of the fore- and hindlimbs that overlapped with digits I and V and several wrist bones. We generated mice lacking the M280 and M1442 enhancers by gene targeting. Intercrosses between M280 -/+ and M1442 -/+, respectively, generated M280 and M1442 null mice, which are born at expected Mendelian ratios and manifest no gross limb malformations. Quantitative real-time PCR of mutant E11.5 limb buds indicated that significant changes in transcriptional output of enhancer-proximal genes accompanied the deletion of both M280 and M1442. In neonatal null mice we observed that all limb bones are present in their expected positions, an observation also confirmed by histology of E18.5 distal limbs. Fine-scale measurement of E18.5 digit bone lengths found no differences between mutant and control embryos. Furthermore, when the developmental progression of cartilaginous elements was analyzed in M280 and M1442 embryos from E13.5-E15.5, transient development defects were not detected. These results demonstrate that M280 and M1442 are not required for mouse limb development. Though M280 is not required for embryonic limb development it is required for the development and/or maintenance of body size – adult M280 mice are significantly smaller than control littermates. These studies highlight the importance of experiments that manipulate enhancers in situ to understand their contribution to development.
Resumo:
The tumor suppressor p53 is mutated in over 50% of human sporadic tumors originating from diverse tissues. p53 responds to DNA damage and cell stress by activating the transcription of a variety of target genes, the protein products of which then initiate either growth arrest or apoptosis. ^ A p53 target with a particularly intriguing function is the oncogene MDM2. MDM2 functions, in part, by binding to and inhibiting p53's activity. Overexpression of MDM2, by gene amplification, has been found in 30% of human sarcomas harboring a wild type p53, indicating that an increase in MDM2 levels is sufficient for p53 inactivation. Mice carrying a homozygous null allele for mdm2 exhibit an early embryonic lethality that is completely rescued in a p53-null background. These data indicate that MDM2's only critical function in early mouse embryogenesis is the negative regulation of p53. ^ The mdmx gene is the first additional member of the mdm2 gene family to be isolated. MDMX, like MDM2, contains a RING-finger domain, ATP binding domain and a p53 binding domain, which retains the ability to bind and inhibit p53 transactivation in vitro. However, mdmx does not appear to be transcriptionally regulated by p53. We have cloned and characterized the murine mdmx genomic locus from a mouse 129 genomic library. The mdmx gene contains 11 exons, spans approximately 37 Kb of DNA, and is located on mouse chromosome 1. The genomic organization of the mdmx gene is identical to that of mdm2 except at the 5′ end of the gene near the p53 responsive element. Northern expression analysis of mdmx transcripts during mouse embryogenesis and in adult tissues revealed constitutive and ubiquitous expression throughout adult tissues and embryonic development. To determine the in vivo function of MDMX, mice carrying a null allele of mdmx have been generated. Mdmx homozygous null mice are early embryonic lethal. Mdmx null mice do not develop beyond 9.5 dpc and can be discerned by gross dissection as early as 7.5 dpc. Utilizing TUNEL and BrdU assays on 7.5 dpc histological sections we have determined that the mutant embryos are dying due to increased levels of growth arrest, but not apoptosis. Surprisingly, Mdmx homozygous null mice are viable in a p53 null background, indicating that MDMX is also very important in the negative regulation of p53. ^
Resumo:
Land-based aquaculture facilities often utilize additional bicarbonate sources such as commercial sea salts that are designed to boost alkalinity in order to buffer seawater against reductions in pH. Despite these preventative measures, many facilities are likely to face occasional reductions in pH and corresponding reductions in carbonate saturation states due to the accumulation of metabolic waste products. We investigated the impact of reduced carbonate saturation states (Omega Ca, Omega Ar) on embryonic developmental rates, larval developmental rates, and echinoplutei skeletal morphometrics in the common edible sea urchin Lytechinus variegatus under high alkalinity conditions. Commercial artificial seawater was bubbled with a mixture of air and CO2 gas to reduce the carbonate saturation state. Rates of embryonic and larval development were significantly delayed in both the low and extreme low carbonate saturation state groups relative to the control at a given time. Although symmetry of overall skeletal body lengths was not affected, allometric relationships were significantly different between treatment groups. Larvae reared under ambient conditions had significantly greater postoral arm and overall body lengths relative to body lengths than larvae grown under extreme low carbonate saturation state conditions, indicating that extreme changes in the carbonate system affected not only developmental rates but also larval skeletal shape. Reduced rates of embryonic development and delayed and altered larval skeletal growth are likely to negatively impact larval culturing of L. variegatus in land-based, intensive culture situations where calcite and aragonite saturation states are lowered by the accumulation of metabolic waste products.
Resumo:
We evaluated the effect of pH on larval development in larval Pacific oyster (Crassostrea gigas) and blood cockle ( Arca inflata Reeve). The larvae were reared at pH 8.2 (control), 7.9, 7.6, or 7.3 beginning 30 min or 24 h post fertilization. Exposure to lower pH during early embryonic development inhibited larval shell formation in both species. Compared with the control, larvae took longer to reach the D-veliger stage when reared under pH 7.6 and 7.3. Exposure to lower pH immediately after fertilization resulted in significantly delayed shell formation in the Pacific oyster larvae at pH 7.3 and blood cockle larvae at pH 7.6 and 7.3. However, when exposure was delayed until 24 h post fertilization, shell formation was only inhibited in blood cockle larvae reared at pH 7.3. Thus, the early embryonic stages were more sensitive to acidified conditions. Our results suggest that ocean acidification will have an adverse effect on embryonic development in bivalves. Although the effects appear subtle, they may accumulate and lead to subsequent issues during later larval development.