997 resultados para Embedding Problem
Developing a model of embedding academic numeracy in university programs : a case study from nursing
Resumo:
This is a study of the academic numeracy of nursing students. This study develops a theoretical model for the design and delivery of university courses in academic numeracy. The following objectives are addressed: 1. To investigate nursing students' current knowledge of academic numeracy; 2. To investigate how nursing students’ knowledge and skills in academic numeracy can be enhanced using a developmental psychology framework; and 3. To utilise data derived from meeting objectives 1 and 2 to develop a theoretical model to embed academic numeracy in university programs. This study draws from Valsiner’s Human Development Theory (Valsiner, 1997, 2007). It is a quasi-experimental intervention case study (Faltis, 1997) and takes a multimethod approach using pre- and post-tests; observation notes; and semi-structured teaching sessions to document a series of microgenetic studies of student numeracy. Each microgenetic study is centered on the lived experience of students becoming more numerate. The method for this section is based on Vygotsky’s double stimulation (Valsiner, 2000a; 2007). Data collection includes interviews on students’ past experience with mathematics; their present feelings and experiences and how these present feelings and experiences are transformed. The findings from this study have provided evidence that the course developed for nursing students, underpinned by an appropriate framework, does improve academic numeracy. More specifically, students improved their content knowledge of and confidence in mathematics in areas that were directly related to their degree. The study used Valsiner’s microgenetic approach to development to trace the course as it was being taught and two students’ personal academic numeracy journeys. It highlighted particularly troublesome concepts, then outlined scaffolding and pathways used to develop understanding. This approach to academic numeracy development was summarised into a four-faceted model at the university, program, course and individual level. This model can be applied successfully to similar contexts. Thus the thesis advances both theory and practice in this under-researched and under-theorised area.
Resumo:
With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the students were able to effectively relate their problem solving strategies to real-world contexts. The qualitative study involved 23 Grade 6 students participating in robotics activities at a Brisbane primary school. The study included data collected from researcher observations of student problem solving discussions, collected software programs, and data from a student completed questionnaire. Results from the study indicated that the robotic activities assisted students to reflect on the problem solving decisions they made. The study also highlighted that the students were able to relate their problem solving strategies to real-world contexts. The study demonstrated that while LEGO robotics can be considered useful problem solving tools in the classroom, careful teacher scaffolding needs to be implemented in regards to correlating LEGO with authentic problem solving. Further research in regards to how teachers can best embed realworld contexts into effective robotics lessons is recommended.
Resumo:
It is now widely recognised that the creative industries constitute an important and growing global economic sector (Cunningham, 2007). Career development programs for the creative industries sector are an international priority (Guile, 2007) which faces several key challenges. These challenges relate to the unique nature of the creative industries. In the creative industries it is thus of critical importance that tertiary work-integrated learning programs focus on more than just training students to become employees: they must also focus on developing the experience and employability of students who will undertake non-conventional career paths. One challenge for work-integrated learning programs in the creative industries is that there is little professional tradition of internships; many employers are not experienced in work-integrated learning participation, and many academics are not familiar with work-integrated learning. This paper reports on the results of an evaluative research program undertaken one year after the launch of the Queensland University of Technology’s (Brisbane, Australia) Creative Industries Transitions to New Professional Environments work-integrated learning program, focusing particularly on key themes and issues identified in interviews with the program’s industry partners and academic staff.
Resumo:
In practice, parallel-machine job-shop scheduling (PMJSS) is very useful in the development of standard modelling approaches and generic solution techniques for many real-world scheduling problems. In this paper, based on the analysis of structural properties in an extended disjunctive graph model, a hybrid shifting bottleneck procedure (HSBP) algorithm combined with Tabu Search metaheuristic algorithm is developed to deal with the PMJSS problem. The original-version SBP algorithm for the job-shop scheduling (JSS) has been significantly improved to solve the PMJSS problem with four novelties: i) a topological-sequence algorithm is proposed to decompose the PMJSS problem into a set of single-machine scheduling (SMS) and/or parallel-machine scheduling (PMS) subproblems; ii) a modified Carlier algorithm based on the proposed lemmas and the proofs is developed to solve the SMS subproblem; iii) the Jackson rule is extended to solve the PMS subproblem; iv) a Tabu Search metaheuristic algorithm is embedded under the framework of SBP to optimise the JSS and PMJSS cases. The computational experiments show that the proposed HSBP is very efficient in solving the JSS and PMJSS problems.
Resumo:
For the shop scheduling problems such as flow-shop, job-shop, open-shop, mixed-shop, and group-shop, most research focuses on optimizing the makespan under static conditions and does not take into consideration dynamic disturbances such as machine breakdown and new job arrivals. We regard the shop scheduling problem under static conditions as the static shop scheduling problem, while the shop scheduling problem with dynamic disturbances as the dynamic shop scheduling problem. In this paper, we analyze the characteristics of the dynamic shop scheduling problem when machine breakdown and new job arrivals occur, and present a framework to model the dynamic shop scheduling problem as a static group-shop-type scheduling problem. Using the proposed framework, we apply a metaheuristic proposed for solving the static shop scheduling problem to a number of dynamic shop scheduling benchmark problems. The results show that the metaheuristic methodology which has been successfully applied to the static shop scheduling problems can also be applied to solve the dynamic shop scheduling problem efficiently.
Resumo:
Three types of shop scheduling problems, the flow shop, the job shop and the open shop scheduling problems, have been widely studied in the literature. However, very few articles address the group shop scheduling problem introduced in 1997, which is a general formulation that covers the three above mentioned shop scheduling problems and the mixed shop scheduling problem. In this paper, we apply tabu search to the group shop scheduling problem and evaluate the performance of the algorithm on a set of benchmark problems. The computational results show that our tabu search algorithm is typically more efficient and faster than the other methods proposed in the literature. Furthermore, the proposed tabu search method has found some new best solutions of the benchmark instances.
Resumo:
In this paper, three metaheuristics are proposed for solving a class of job shop, open shop, and mixed shop scheduling problems. We evaluate the performance of the proposed algorithms by means of a set of Lawrence’s benchmark instances for the job shop problem, a set of randomly generated instances for the open shop problem, and a combined job shop and open shop test data for the mixed shop problem. The computational results show that the proposed algorithms perform extremely well on all these three types of shop scheduling problems. The results also reveal that the mixed shop problem is relatively easier to solve than the job shop problem due to the fact that the scheduling procedure becomes more flexible by the inclusion of more open shop jobs in the mixed shop.
Resumo:
In this paper, we propose three meta-heuristic algorithms for the permutation flowshop (PFS) and the general flowshop (GFS) problems. Two different neighborhood structures are used for these two types of flowshop problem. For the PFS problem, an insertion neighborhood structure is used, while for the GFS problem, a critical-path neighborhood structure is adopted. To evaluate the performance of the proposed algorithms, two sets of problem instances are tested against the algorithms for both types of flowshop problems. The computational results show that the proposed meta-heuristic algorithms with insertion neighborhood for the PFS problem perform slightly better than the corresponding algorithms with critical-path neighborhood for the GFS problem. But in terms of computation time, the GFS algorithms are faster than the corresponding PFS algorithms.
Resumo:
This is a methodologically exemplary trial of a population based (universal) approach to preventing depression in young people. The programme used teachers in a classroom setting to deliver cognitive behavioural problem solving skills to a cohort of students. We have little knowledge about “best practice” to prevent depression in adolescence. Classroom-based universal approaches appear to offer advantages in recruitment rates and lack of stigmatisation over approaches that target specific groups of at risk students. Earlier research on a universal school-based approach to preventing depression in adolescents showed promise, but employed mental health professionals to teach cognitive behavioural coping skills in small groups.1 Using such an approach routinely would be economically unsustainable. Spence’s trial, with teachers as facilitators, therefore represents a “real world” intervention that could be routinely disseminated.
Resumo:
The literature supporting the notion that active, student-centered learning is superior to passive, teacher-centered instruction is encyclopedic (Bonwell & Eison, 1991; Bruning, Schraw, & Ronning, 1999; Haile, 1997a, 1997b, 1998; Johnson, Johnson, & Smith, 1999). Previous action research demonstrated that introducing a learning activity in class improved the learning outcomes of students (Mejias, 2010). People acquire knowledge and skills through practice and reflection, not by watching and listening to others telling them how to do something. In this context, this project aims to find more insights about the level of interactivity in the curriculum a class should have and its alignment with assessment so the intended learning outcomes (ILOs) are achieved. In this project, interactivity is implemented in the form of problem- based learning (PBL). I present the argument that a more continuous formative feedback when implemented with the correct amount of PBL stimulates student engagement bringing enormous benefits to student learning. Different levels of practical work (PBL) were implemented together with two different assessment approaches in two subjects. The outcomes were measured using qualitative and quantitative data to evaluate the levels of student engagement and satisfaction in the terms of ILOs.
Resumo:
Court costs, resource-intensive trials, booming prison populations and the obduracy of recidivism rates all present as ugly excesses of the criminal law adversarial paradigm. To combat these excesses, problem-solving courts have evolved with an edict to address the underlying issues that have caused an individual to commit a crime. When a judge seeks to help a problem-solving court participant deal with issues like addiction, mental health or poverty, they are performing a very different role to that of a judicial officer in the traditional court hierarchy. They are no longer the removed, independent arbiter — a problem-solving court judge steps into the ‘arena’ with the participant and makes active use of their judicial authority to assist in rehabilitation and positive behavioural change. Problem-solving court judges employing the principles of therapeutic jurisprudence appreciate that their interaction with participants can have therapeutic and anti-therapeutic consequences. This article will consider how the deployment of therapeutic measures (albeit with good intention) can lead to the behavioural manifestation of partiality and bias on the part of problem-solving court judges. Chapter III of the Commonwealth Constitution will then be analysed to highlight why the operation and functioning of problem solving courts may be deemed unconstitutional. Part IV of this article will explain how a problem-solving court judge who is not acting impartially or independently will potentially contravene the requirements of the Constitution. It will finally be suggested that judges who possess a high level of emotional intelligence will be the most successful in administering an independent and impartial problem solving court.
Resumo:
Sustainability has emerged as a primary context for engineering education in the 21st Century, particularly the sub-discipline of chemical engineering. However, there is confusion over how to go about integrating sustainability knowledge and skills systemically within bachelor degrees. This paper addresses this challenge, using a case study of an Australian chemical engineering degree to highlight important practical considerations for embedding sustainability at the core of the curriculum. The paper begins with context for considering a systematic process for rapid curriculum renewal. The authors then summarise a 2-year federally funded project, which comprised piloting a model for rapid curriculum renewal led by the chemical engineering staff. Model elements contributing to the renewal of this engineering degree and described in this paper include: industry outreach; staff professional development; attribute identification and alignment; program mapping; and curriculum and teaching resource development. Personal reflections on the progress and process of rapid curriculum renewal in sustainability by the authors and participating engineering staff will be presented as a means to discuss and identify methodological improvements, as well as highlight barriers to project implementation. It is hoped that this paper will provide an example of a formalised methodology on which program reform and curriculum renewal for sustainability can be built upon in other higher education institutions.
Resumo:
Purpose This chapter investigates an episode where a supervising teacher on playground duty asks two boys to each give an account of their actions over an incident that had just occurred on some climbing equipment in the playground. Methodology This paper employs an ethnomethodological approach using conversation analysis. The data are taken from a corpus of video recorded interactions of children, aged 7-9 years, and the teacher, in school playgrounds during the lunch recess. Findings The findings show the ways that children work up accounts of their playground practices when asked by the teacher. The teacher initially provided interactional space for each child to give their version of the events. Ultimately, the teacher’s version of how to act in the playground became the sanctioned one. The children and the teacher formulated particular social orders of behavior in the playground through multi-modal devices, direct reported speech and scripts. Such public displays of talk work as socialization practices that frame teacher-sanctioned morally appropriate actions in the playground. Value of paper This chapter shows the pervasiveness of the teacher’s social order, as she presented an institutional social order of how to interact in the playground, showing clearly the disjunction of adult-child orders between the teacher and children.
Resumo:
This thesis develops a detailed conceptual design method and a system software architecture defined with a parametric and generative evolutionary design system to support an integrated interdisciplinary building design approach. The research recognises the need to shift design efforts toward the earliest phases of the design process to support crucial design decisions that have a substantial cost implication on the overall project budget. The overall motivation of the research is to improve the quality of designs produced at the author's employer, the General Directorate of Major Works (GDMW) of the Saudi Arabian Armed Forces. GDMW produces many buildings that have standard requirements, across a wide range of environmental and social circumstances. A rapid means of customising designs for local circumstances would have significant benefits. The research considers the use of evolutionary genetic algorithms in the design process and the ability to generate and assess a wider range of potential design solutions than a human could manage. This wider ranging assessment, during the early stages of the design process, means that the generated solutions will be more appropriate for the defined design problem. The research work proposes a design method and system that promotes a collaborative relationship between human creativity and the computer capability. The tectonic design approach is adopted as a process oriented design that values the process of design as much as the product. The aim is to connect the evolutionary systems to performance assessment applications, which are used as prioritised fitness functions. This will produce design solutions that respond to their environmental and function requirements. This integrated, interdisciplinary approach to design will produce solutions through a design process that considers and balances the requirements of all aspects of the design. Since this thesis covers a wide area of research material, 'methodological pluralism' approach was used, incorporating both prescriptive and descriptive research methods. Multiple models of research were combined and the overall research was undertaken following three main stages, conceptualisation, developmental and evaluation. The first two stages lay the foundations for the specification of the proposed system where key aspects of the system that have not previously been proven in the literature, were implemented to test the feasibility of the system. As a result of combining the existing knowledge in the area with the newlyverified key aspects of the proposed system, this research can form the base for a future software development project. The evaluation stage, which includes building the prototype system to test and evaluate the system performance based on the criteria defined in the earlier stage, is not within the scope this thesis. The research results in a conceptual design method and a proposed system software architecture. The proposed system is called the 'Hierarchical Evolutionary Algorithmic Design (HEAD) System'. The HEAD system has shown to be feasible through the initial illustrative paper-based simulation. The HEAD system consists of the two main components - 'Design Schema' and the 'Synthesis Algorithms'. The HEAD system reflects the major research contribution in the way it is conceptualised, while secondary contributions are achieved within the system components. The design schema provides constraints on the generation of designs, thus enabling the designer to create a wide range of potential designs that can then be analysed for desirable characteristics. The design schema supports the digital representation of the human creativity of designers into a dynamic design framework that can be encoded and then executed through the use of evolutionary genetic algorithms. The design schema incorporates 2D and 3D geometry and graph theory for space layout planning and building formation using the Lowest Common Design Denominator (LCDD) of a parameterised 2D module and a 3D structural module. This provides a bridge between the standard adjacency requirements and the evolutionary system. The use of graphs as an input to the evolutionary algorithm supports the introduction of constraints in a way that is not supported by standard evolutionary techniques. The process of design synthesis is guided as a higher level description of the building that supports geometrical constraints. The Synthesis Algorithms component analyses designs at four levels, 'Room', 'Layout', 'Building' and 'Optimisation'. At each level multiple fitness functions are embedded into the genetic algorithm to target the specific requirements of the relevant decomposed part of the design problem. Decomposing the design problem to allow for the design requirements of each level to be dealt with separately and then reassembling them in a bottom up approach reduces the generation of non-viable solutions through constraining the options available at the next higher level. The iterative approach, in exploring the range of design solutions through modification of the design schema as the understanding of the design problem improves, assists in identifying conflicts in the design requirements. Additionally, the hierarchical set-up allows the embedding of multiple fitness functions into the genetic algorithm, each relevant to a specific level. This supports an integrated multi-level, multi-disciplinary approach. The HEAD system promotes a collaborative relationship between human creativity and the computer capability. The design schema component, as the input to the procedural algorithms, enables the encoding of certain aspects of the designer's subjective creativity. By focusing on finding solutions for the relevant sub-problems at the appropriate levels of detail, the hierarchical nature of the system assist in the design decision-making process.