164 resultados para Elston, Micheal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

List of members issued with v. 35- with separate paging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Project developer: Teri Elston.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vol. 5 by J. P. C. French and Z. Armstrong; v. 6 by J. P. C. French.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Back Row: Chris Ashton, Tim Murphy, Paul Schmidt, Jim Boccher, Mike Elston, Mike Gittleson, Bobby Morrison, Teryl Austin, Brady Hoke, Jim Herrmann, Scott Draper, Fred Jackson, Stan Parrish, Erik Campbell, Terry Malone, Andy Moeller, Mike Bajakian, Phil Bromley, Jon Falk

8th Row: Dr. Edward Wojtys, Dr. C. Daniel Hendrickson, Dr. Gerald O'Connor, Dr. James Carpenter, Todd Mossa, Jason Clyne, Andre Bell-Watkins, Kyle Bierlein, Ryan Parini, Sean Merrill, Rick Brandt, Caene Turner, Luke Perl, Andy Stelskal, Michael Williams, Bob Bland, Mark Ouimet, Kelly Cox, Mark Borgman, Kevin Undeen, Jim Schneider

7th Row: Tim Bracken, Zia Combs, Kevin Dudley, Zack Kaufman, Calvin Bell, Kolby Wells, Roy Manning, Adam Finley, D.J. Belcher, Josh Blackman, Jermaine Gonzales, Sean Cassidy, Andy Christopfel, Mike Kasiborski, Ross Kesler, Ross Mann, Brian Lafer, Charles Young

6th Row: Jon Shaw, Brandon Williams, Carl Diggs, Andy Brown, Dave Pearson, Courtney Morgan, John Spytek, David Baas, Jim Fisher, Tyler Ecker, Jeff Gaston, Alain Kashama, Larry Stevens, Chris Perry, Phil Brabbs, Joe Ghannam, Jeff Rich

5th Row: Ryan Beard, Brent Cummings, Jeremy LeSueur, Grant Bowman, Shantee Orr, Travis DeMeester, Phil Brackins, Tony Pape, John Navarre, Demeterius Solomon, Norman Boebert, Michael Kaselitz, B.J. Askew, Andy Mignery, Tyrece Butler, Brian Smalls

4th Row: Todd Howard, Walter Cross, Joe Sgroi, Evan Coleman, Blake Nasif, Justin Fargas, Larry Foote, John Wood, Kirk Moundros, Dwight Mosley, Stephen Baker, Julius Curry, Scott Panique, Tad Van Pelt, Ronald Bellamy, Cato June, Charles Drake

3rd Row: Aaron Richards, Cyle Young, Victor Hobson, Hayden Epstein, Dan Rumishek, Shawn Lazarus, Deitan Dubuc, Bennie Joppru, Joe Denay, Dave Petruziello, Drew Henson, David Terrell, Marquise Walker, Dave Armstrong, Bob Fraumann, Mike Manning, Jeremy Miller

2nd Row: Tommy Jones, P.J. Cwayna, Anthony Jordan, Bill Seymour, Shawn Thompson, Ben Mast, Jonathan Goodwin, Eric Warner, Kurt Anderson, Eric Brackins, Gary Rose, Eric Rosel, Brodie Killian, Rudy Smith, Dan Williams

Front Row: Jeff Del Verne, DeWayne Patmon, Eric Wilson, Maurice Williams, Jeff Backus Steve Hutchinson, Lloyd Carr, Anthony Thomas, David Brandt, Jake Frysinger, James Whitley, Andy Sechler, Cory Sargent

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(framed image, print stuck to glass, partially damaged, scanned through glass)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha helices are key structural components of proteins and important recognition motifs in biology. New techniques for stabilizing short peptide helices could be valuable for studying protein folding, modeling proteins, creating artificial proteins, and may aid the design of inhibitors or mimics of protein function. We previously reported* that 5-15 residue peptides, corresponding to the Zn-binding domain of thermolysin, react with [Pd(en)(ONO,),]in DMF-d’ and 90% H,O 10% DzO to form a 22-membered [Pd(en)(H*ELTH*)]2+ macrocycle that is helical in solution and acts as a template in nucleating helicity in both Cand N- terminal directions within the longer sequences in DMF. ~f~~&g7$$& d&qx~m ~. y AC&q& In water, however, there was less a-helicity observed, testifying to #..q,& &$--Lb &l-- &.$;,J~p?:~~q&~+~~ ’ w w the difficulty of fixing intramolecular amide NH...OC H-bonds in 6,“;;” ( k.$ U”C.a , p d$. competition with the H-bond donor solvent water. To expand the utility of [Pd(en)(H*XXXH*)]*+ as a helix- @r4”8 & oJ#:& &G& @-qd ,‘d@-gyp promoting module in solution, we now report the result that Ac- ‘$4: %$yyy + H*ELTH*H*VTDH*-NH,(l), AC-H*ELTH*AVTDYH*ELTH*- NH, (2) and AC-H*AAAH*H*ELTH*H*VTDH*-NH* (3) react with multiple equivalents of [Pd(en)(ONO,),] to produce exclusively 4-6 respectively in both DMF-d7 and water (90% Hz0 10% D,O). Mass spectrometry, 15N- and 2D ‘H- NMR spectroscopy, and CD spectra were used to characterise the structures 4-6, and their three dimensional structures were calculated from NOE restraints using simulated annealing protocols. Results demonstrate (a) selective coordination of metal ions at (i, i+4) histidine positions in water and DMF, (b) incorporation of 2 and 3 a turn-mimicking modules [Pd(en)(HELTH)]2+ in lo-15 residue peptides, and (c) facile conversion of unstructured peptides into 3- and 4- turn helices of macrocycles, with well defined a-helicity throughout and more structure in DMF than in water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyramidal neurons are covered with dendritic spines, the main postsynaptic targets of excitatory (asymmetrical) synapses. However, the proximal portion of both the apical and basal dendrites is devoid of spines, suggesting a lack of excitatory inputs to this region. In the present study we used electron microscopy to analyse the proximal region of the basal dendrites of supra- and infragranular pyramidal cells to determine if this is the case. The proximal region of 80 basal dendrites sampled from the rat hindlimb representation in the primary somatosensory cortex was studied by electron microscopy A total of 317 synapses were found within this region of the dendrites, all of which were of the symmetrical type. These results suggest that glutamate receptors, although present in the cytoplasm, are not involved in synaptic junctions in the proximal portion of the dendrites. These data further support the idea that inhibitory terminals exclusively innervate the proximal region of basal dendrites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery in the 1970s that dendritic abnormalities in cortical pyramidal neurons are the most consistent pathologic correlate of mental retardation, research has focused on how dendritic alterations are related to reduced intellectual ability. Due in part to obvious ethical problems and in part to the lack of fruitful methods to study neuronal circuitry in the human cortex, there is little data about the microanatomical contribution to mental retardation. The recent identification of the genetic bases of some mental retardation associated alterations, coupled with the technology to create transgenic animal models and the introduction of powerful sophisticated tools in the field of microanatomy, has led to a growth in the studies of the alterations of pyramidal cell morphology in these disorders. Studies of individuals with Down syndrome, the most frequent genetic disorder leading to mental retardation, allow the analysis of the relationships between cognition, genotype and brain microanatomy. In Down syndrome the crucial question is to define the mechanisms by which an excess of normal gene products, in interaction with the environment, directs and constrains neural maturation, and how this abnormal development translates into cognition and behaviour. In the present article we discuss mainly Down syndrome-associated dendritic abnormalities and plasticity and the role of animal models in these studies. We believe that through the further development of such approaches, the study of the microanatomical substrates of mental retardation will contribute significantly to our understanding of the mechanisms underlying human brain disorders associated with mental retardation. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have revealed a marked degree of variation in the pyramidal cell phenotype in visual, somatosensory, motor and prefrontal cortical areas in the brain of different primates, which are believed to subserve specialized cortical function. In the present study we carried out comparisons of dendritic structure of layer III pyramidal cells in the anterior and posterior cingulate cortex and compared their structure with those sampled from inferotemporal cortex (IT) and the primary visual area (V1) in macaque monkeys. Cells were injected with Lucifer Yellow in flat-mounted cortical slices, and processed for a light-stable DAB reaction product. Size, branching pattern, and spine density of basal dendritic arbors was determined, and somal areas measured. We found that pyramidal cells in anterior cingulate cortex were more branched and more spinous than those in posterior cingulate cortex, and cells in both anterior and posterior cingulate were considerably larger, more branched, and more spinous than those in area V1. These data show that pyramidal cell structure differs between posterior dysgranular and anterior granular cingulate cortex, and that pyramidal neurons in cingulate cortex have different structure to those in many other cortical areas. These results provide further evidence for a parallel between structural and functional specialization in cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have revealed systematic differences in the pyramidal cell structure between functionally related cortical areas of primates. Trends for a parallel in pyramidal cell structure and functional complexity have been reported in visual, somatosensory, motor, cingulate and prefrontal cortex in the macaque monkey cortex. These specializations in structure have been interpreted as being fundamental in determining cellular and systems function, endowing circuits in these different cortical areas with different computational power. In the present study we extend our initial finding of systematic specialization of pyramidal cell structure in sensory-motor cortex in the macaque monkey [Cereb Cortex 12 (2002) 1071] to the vervet monkey. More specifically, we investigated pyramidal cell structure in somatosensory and motor areas 1/2, 5, 7, 4 and 6. Neurones in fixed, flat-mounted, cortical slices were injected intracellularly with Lucifer Yellow and processed for a light-stable 3,3'-diaminobenzidine reaction product. The size of, number of branches in, and spine density of the basal dendritic arbors varied systematically such that there was a trend for increasing complexity in arbor structure with progression through 1/2, 5 and 7. In addition, cells in area 6 were larger, more branched, and more spinous than those in area 4. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gene encoding the dual-specificity tyrosine-regulated kinase DYRK1A maps to the chromosomal segment HSA21q22.2, which lies within the Down syndrome critical region. The reduction in brain size and behavioral defects observed in mice lacking one copy of the murine homologue Dyrk1A (Dyrk1A+/-) support the idea that this kinase may be involved in monosomy 21 associated mental retardation. However, the structural basis of these behavioral defects remains unclear. In the present work, we have analyzed the microstructure of cortical circuitry in the Dyrk1A+/- mouse and control littermates by intracellular injection of Lucifer Yellow in fixed cortical tissue. We found that labeled pyramidal cells were considerably smaller, less branched and less spinous in the cortex of Dyrk1A+/- mice than in control littermates. These results suggest that Dyrk1A influences the size and complexity of pyramidal cells, and thus their capability to integrate information. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study forms part of an ongoing investigation of pyramidal cell structure in the cingulate cortex of primates. Recently we have demonstrated that layer III pyramidal cells in the anterior cingulate gyrus are considerably larger, more branched and more spinous than those in the posterior cingulate gyrus (areas 24 and 23, respectively) in the macaque and vervet monkeys. Moreover, the extent of the interareal difference in specialization in pyramidal cell structure differed between the two species. These data suggest that pyramidal cell circuitry may have evolved differently in these closely related species. Presently there are too few data to speculate on what is selecting for this specialization in structure. Here we extend the basis for comparison by studying pyramidal cell structure in cingulate gyrus of the Chacma baboon (Papio ursinus). Methodology used here is the same as that for our previous studies: intracellular injection of Lucifer Yellow in flat-mounted cortical slices. We found that pyramidal cells in anterior cingulate gyrus (area 24) were more branched and more spinous than those in posterior cingulate gyrus (area 23). Moreover, the complexity in pyramidal cell structure in both the anterior and posterior cingulate gyrus of the baboon differed to that in the corresponding regions in either the macaque or vervet monkeys. (C) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The systematic study of pyramidal cell structure has revealed new insights into specialization of the phenotype in the primate cerebral cortex. Regional specialization in the neuronal phenotype may influence patterns of connectivity and the computational abilities of the circuits they compose. The comparative study of pyramidal cells in homologous cortical areas is beginning to yield data on the evolution and development of such specialized circuitry in the primate cerebral cortex. Recently, we have focused our efforts on sensory-motor cortex. Based on our intracellular injection methodology, we have demonstrated a progressive increase in the size of, the branching structure in, and the spine density of the basal dendritic trees of pyramidal cells through somatosensory areas 3b, 1, 2, 5, and 7 in the macaque and vervet monkeys. In addition, we have shown that pyramidal cells in premotor area 6 are larger, more branched, and more spinous than those in the primary motor cortex (MI or area 4) in the macaque monkey, vervet monkey, and baboon. Here we expand the basis for comparison by studying the basal dendritic trees of layer III pyramidal cells in these same sensory-motor areas in the chacma baboon. The baboon was selected because it has a larger cerebral cortex than either the macaque or vervet monkeys; motor cortex has expanded disproportionately in these three species; and motor cortex in the baboon reportedly has differentiated to include a new cortical area not present in either the macaque or vervet monkeys. We found, as in monkeys, a progressive increase in the morphological complexity of pyramidal cells through areas 3b, 5, and 7, as well as from area 4 to area 6, suggesting that areal specialization in microcircuitry was likely to be present in a common ancestor of primates. In addition, we found subtle differences in the extent of the interareal differences in pyramidal cell structure between homologous cortical areas in the three species. (c) 2005 Wiley-Liss, Inc.