985 resultados para Elevated-temperature


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand the adaptation of euphausiid (krill) species to oxygen minimum zones (OMZ), respiratory response and stress experiments combining hypoxia/reoxygenation exposure with warming were conducted. Experimental krill species were obtained from the Antarctic (South Georgia area), the Humboldt Current system (HCS, Chilean coast), and the Northern California Current system (NCCS, Oregon). Euphausia mucronata from the HCS shows oxyconforming or oxygen partial pressure (pO2)-dependent respiration below 80% air saturation (18 kPa). Normoxic subsurface oxygenation in winter posed a "high oxygen stress" for this species. The NCCS krill, Euphausia pacifica, and the Antarctic krill, Euphausia superba maintain respiration rates constant down to low critical pO2 values of 6 kPa (30% air saturation) and 11 kPa (55% air saturation), respectively. Antarctic krill had the lowest antioxidant enzyme activities, but the highest concentrations of the molecular antioxidant glutathione (GSH) and was not affected by 6 h exposure to moderate hypoxia. Temperate krill species had higher SOD (superoxide dismutase) values in winter than in summer, which relate to higher winter metabolic rate (E. pacifica). In all species, antioxidant enzyme activities remained constant during hypoxic exposure at habitat temperature. Warming by 7°C above habitat temperature in summer increased SOD activities and GSH levels in E. mucronata (HCS), but no oxidative damage occurred. In winter, when the NCCS is well mixed and the OMZ is deeper, +4°C of warming combined with hypoxia represents a lethal condition for E. pacifica. In summer, when the OMZ expands upwards (100 m subsurface), antioxidant defences counteracted hypoxia and reoxygenation effects in E. pacifica, but only at mildly elevated temperature (+2°C). In this season, experimental warming by +4°C reduced antioxidant activities and the hypoxia combination again caused mortality of exposed specimens. We conclude that a climate change scenario combining warming and hypoxia represents a serious threat to E. pacifica and, as a consequence, NCCS food webs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypercapnia and elevated temperatures resulting from climate change may have adverse consequences for many marine organisms. While diverse physiological and ecological effects have been identified, changes in those molecular mechanisms, which shape the physiological phenotype of a species and limit its capacity to compensate, remain poorly understood. Here, we use global gene expression profiling through RNA-Sequencing to study the transcriptional responses to ocean acidification and warming in gills of the boreal spider crab Hyas araneus exposed medium-term (10 weeks) to intermediate (1,120 µatm) and high (1,960 µatm) PCO2 at different temperatures (5°C and 10°C). The analyses reveal shifts in steady state gene expression from control to intermediate and from intermediate to high CO2 exposures. At 5°C acid-base, energy metabolism and stress response related genes were upregulated at intermediate PCO2, whereas high PCO2 induced a relative reduction in expression to levels closer to controls. A similar pattern was found at elevated temperature (10°C). There was a strong coordination between acid-base, metabolic and stress-related processes. Hemolymph parameters at intermediate PCO2 indicate enhanced capacity in acid-base compensation potentially supported by upregulation of a V-ATPase. The likely enhanced energy demand might be met by the upregulation of the electron transport system (ETS), but may lead to increased oxidative stress reflected in upregulated antioxidant defense transcripts. These mechanisms were attenuated by high PCO2, possibly as a result of limited acid-base compensation and metabolic down-regulation. Our findings indicate a PCO2 dependent threshold beyond which compensation by acclimation fails progressively. They also indicate a limited ability of this stenoecious crustacean to compensate for the effects of ocean acidification with and without concomitant warming.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rising anthropogenic carbon dioxide (CO2) dissolving into coastal waters is decreasing the pH and carbonate ion concentration, thereby lowering the saturation state of calcium carbonate (CaCO3) minerals through a process named ocean acidification (OA). The unprecedented threats posed by such low pH on calcifying larvae of several edible oyster species have not yet been fully explored. Effects of low pH (7.9, 7.6, 7.4) on the early growth phase of Portuguese oyster (Crassostrea angulata) veliger larvae was examined at ambient salinity (34 ppt) and the low-salinity (27 ppt) treatment. Additionally, the combined effect of pH (8.1, 7.6), salinity (24 and 34 ppt) and temperature (24 °C and 30 °C) was examined using factorial experimental design. Surprisingly, the early growth phase from hatching to 5-day-old veliger stage showed high tolerance to pH 7.9 and pH 7.6 at both 34 ppt and 27 ppt. Larval shell area was significantly smaller at pH 7.4 only in low-salinity. In the 3-factor experiment, shell area was affected by salinity and the interaction between salinity and temperature but not by other combinations. Larvae produced the largest shell at the elevated temperature in low-salinity, regardless of pH. Thus the growth of the Portuguese oyster larvae appears to be robust to near-future pH level (> 7.6) when combined with projected elevated temperature and low-salinity in the coastal aquaculture zones of South China Sea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Efforts to evaluate the response of coral larvae to global climate change (GCC) and ocean acidification (OA) typically employ short experiments of fixed length, yet it is unknown how the response is affected by exposure duration. In this study, we exposed larvae from the brooding coral Pocillopora damicornis to contrasts of temperature (24.00 °C [ambient] versus 30.49 °C) and pCO2 (49.4 Pa versus 86.2 Pa) for varying periods (1-5 days) to test the hypothesis that exposure duration had no effect on larval response as assessed by protein content, respiration, Symbiodinium density, and survivorship; exposure times were ecologically relevant compared to representative pelagic larval durations (PLD) for corals. Larvae differed among days for all response variables, and the effects of the treatment were relatively consistent regardless of exposure duration for three of the four response variables. Protein content and Symbiodinium density were unaffected by temperature and pCO2, but respiration increased with temperature (but not pCO2) with the effect intensifying as incubations lengthened. Survival, however, differed significantly among treatments at the end of the study, and by the 5th day, 78% of the larvae were alive and swimming under ambient temperature and ambient pCO2, but only 55-59% were alive in the other treatments. These results demonstrate that the physiological effects of temperature and pCO2 on coral larvae can reliably be detected within days, but effects on survival require > or = 5 days to detect. The detection of time-dependent effects on larval survivorship suggests that the influence of GCC and OA will be stronger for corals having long PLDs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concerns about the impacts of ocean acidification on marine life have mostly focused on how reduced carbonate saturation affects calcifying organisms. Here, we show that levels of CO2-induced acidification that may be attained by 2100 could also have significant effects on marine organisms by reducing their aerobic capacity. The effects of temperature and acidification on oxygen consumption were tested in 2 species of coral reef fishes, Ostorhinchus doederleini and O. cyanosoma, from the Great Barrier Reef, Australia. The capacity for aerobic activity (aerobic scope) declined at temperatures above the summer average (29°C) and in CO2-acidified water (pH 7.8 and ~1000 ppm CO2) compared to control water (pH 8.15). Aerobic scope declined by 36 and 32% for O. doederleini and O. cyanosoma at temperatures between 29 to 32°C, whereas it declined by 33 and 47% for O. doederleini and O. cyanosoma in acidified water compared to control water. Thus, the declines in aerobic scope in acidified water were similar to those caused by a 3°C increase in water temperature. Minimum aerobic scope values of ~200 mg O2 kg-1 h-1 were attained for both species in acidified water at 32°C, compared with over 600 mg O2 kg-1 h-1 in control water at 29°C. Mortality rate increased sharply at 33°C, indicating that this temperature is close to the lethal thermal limit for both species. Acidification further increased the mortality rate of O. doederleini, but not of O. cyanosoma. These results show that coral reef fishes are sensitive to both higher temperatures and increased levels of dissolved CO2, and that the aerobic performance of some reef fishes could be significantly reduced if climate change continues unabated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phytoplankton populations can display high levels of genetic diversity that, when reflected by phenotypic variability, may stabilize a species response to environmental changes. We studied the effects of increased temperature and CO2 availability as predicted consequences of global change, on 16 genetically different isolates of the diatom Skeletonema marinoi from the Adriatic Sea and the Skagerrak (North Sea), and on eight strains of the PST (paralytic shellfish toxin)-producing dinoflagellate Alexandrium ostenfeldii from the Baltic Sea. Maximum growth rates were estimated in batch cultures of acclimated isolates grown for five to 10 generations in a factorial design at 20 and 24 °C, and present day and next century applied atmospheric pCO2, respectively. In both species, individual strains were affected in different ways by increased temperature and pCO2. The strongest response variability, buffering overall effects, was detected among Adriatic S. marinoi strains. Skagerrak strains showed a more uniform response, particularly to increased temperature, with an overall positive effect on growth. Increased temperature also caused a general growth stimulation in A. ostenfeldii, despite notable variability in strain-specific response patterns. Our data revealed a significant relationship between strain-specific growth rates and the impact of pCO2 on growth-slow growing cultures were generally positively affected, while fast growing cultures showed no or negative responses to increased pCO2. Toxin composition of A. ostenfeldii was consistently altered by elevated temperature and increased CO2 supply in the tested strains, resulting in overall promotion of saxitoxin production by both treatments. Our findings suggest that phenotypic variability within populations plays an important role in the adaptation of phytoplankton to changing environments, potentially attenuating short-term effects and forming the basis for selection. In particular, A. ostenfeldii blooms may expand and increase in toxicity under increased water temperature and atmospheric pCO2 conditions, with potentially severe consequences for the coastal ecosystem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atmospheric CO2 partial pressure (pCO2) is expected to increase to 700 µatm or more by the end of the present century. Anthropogenic CO2 is absorbed by the oceans, leading to decreases in pH and the CaCO3 saturation state of the seawater. Elevated pCO2 was shown to drastically decrease calcification rates in tropical zooxanthellate corals. Here we show, using the Mediterranean zooxanthellate coral Cladocora caespitosa, that an increase in pCO2, in the range predicted for 2100, does not reduce its calcification rate. Therefore, the conventional belief that calcification rates will be affected by ocean acidification may not be widespread in temperate corals. Seasonal change in temperature is the predominant factor controlling photosynthesis, respiration, calcification and symbiont density. An increase in pCO2, alone or in combination with elevated temperature, had no significant effect on photosynthesis, photosynthetic efficiency and calcification. The lack of sensitivity C. caespitosa to elevated pCO2 might be due to its slow growth rates, which seem to be more dependent on temperature than on the saturation state of calcium carbonate in the range projected for the end of the century.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to their aragonitic shell, thecosome pteropods may be particularly vulnerable to ocean acidification driven by anthropogenic CO2 emissions. This applies specifically to species inhabiting Arctic surface waters that are projected to become temporarily and locally undersaturated with respect to aragonite as early as 2016. This study investigated the effects of rising partial pressure of CO2 (pCO2) and elevated temperature on pre-winter juveniles of the polar pteropod Limacina helicina. After a 29 day experiment in September/October 2009 at three different temperatures and under pCO2 scenarios projected for this century, mortality, shell degradation, shell diameter and shell increment were investigated. Temperature and pCO2 had a significant effect on mortality, but temperature was the overriding factor. Shell diameter, shell increment and shell degradation were significantly impacted by pCO2 but not by temperature. Mortality was 46% higher at 8 °C than at in situ temperature (3 °C), and 14% higher at 1100 ?atm than at 230 ?atm. Shell diameter and increment were reduced by 10 and 12% at 1100 ?atm and 230 ?atm, respectively, and shell degradation was 41% higher at elevated compared to ambient pCO2. We conclude that pre-winter juveniles will be negatively affected by both rising temperature and pCO2 which may result in a possible decline in abundance of the overwintering population, the basis for next year's reproduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of ocean warming and acidification was investigated on a natural plankton assemblage from an oligotrophic area, the bay of Villefranche (NW Mediterranean Sea). The assemblage was sampled in March 2012 and exposed to the following four treatments for 12 days: control ( 360 µatm, 14°C), elevated pCO2 ( 610 µatm, 14°C), elevated temperature ( 410 µatm, 17°C), and elevated pCO2 and temperature ( 690 µatm, 17°C). Nutrients were already depleted at the beginning of the experiment and the concentrations of chlorophyll a (chl a), heterotrophic prokaryotes and viruses decreased, under all treatments, throughout the experiment. There were no statistically significant effects of ocean warming and acidification, whether in isolation or combined, on the concentrations of nutrients, particulate organic matter, chl a and most of the photosynthetic pigments. Furthermore, 13C labelling showed that the carbon transfer rates from 13C-sodium bicarbonate into particulate organic carbon were not affected by seawater warming nor acidification. Rates of gross primary production followed the general decreasing trend of chl a concentrations and were significantly higher under elevated temperature, an effect exacerbated when combined to elevated pCO2 level. In contrast to the other algal groups, the picophytoplankton population (cyanobacteria, mostly Synechococcus) increased throughout the experiment and was more abundant in the warmer treatment though to a lesser extent when combined to high pCO2 level. These results suggest that under nutrient-depleted conditions in the Mediterranean Sea, ocean acidification has a very limited impact on the plankton community and that small species will benefit from warming with a potential decrease of the export and energy transfer to higher trophic levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCO2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and PeCO2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO-3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperature-dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of elevated CO2 and temperature on photosynthesis and calcification in the calcifying algae Halimeda macroloba and Halimeda cylindracea and the symbiont-bearing benthic foraminifera Marginopora vertebralis were investigated through exposure to a combination of four temperatures (28°C, 30°C, 32°C, and 34°C) and four CO2 levels (39, 61, 101, and 203 Pa; pH 8.1, 7.9, 7.7, and 7.4, respectively). Elevated CO2 caused a profound decline in photosynthetic efficiency (FV : FM), calcification, and growth in all species. After five weeks at 34°C under all CO2 levels, all species died. Chlorophyll (Chl) a and b concentration in Halimeda spp. significantly decreased in 203 Pa, 32°C and 34°C treatments, but Chl a and Chl c2 concentration in M. vertebralis was not affected by temperature alone, with significant declines in the 61, 101, and 203 Pa treatments at 28°C. Significant decreases in FV : FM in all species were found after 5 weeks of exposure to elevated CO2 (203 Pa in all temperature treatments) and temperature (32°C and 34°C in all pH treatments). The rate of oxygen production declined at 61, 101, and 203 Pa in all temperature treatments for all species. The elevated CO2 and temperature treatments greatly reduced calcification (growth and crystal size) in M. vertebralis and, to a lesser extent, in Halimeda spp. These findings indicate that 32°C and 101 Pa CO2, are the upper limits for survival of these species on Heron Island reef, and we conclude that these species will be highly vulnerable to the predicted future climate change scenarios of elevated temperature and ocean acidification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Survival of coral planulae, and the successful settlement and healthy growth of primary polyps are critical for the dispersal of scleractinian corals and hence the recovery of degraded coral reefs. It is therefore important to explore how the warmer and more acidic oceanic conditions predicted for the future could affect these processes. This study used controlled culture to investigate the effects of a 1 °C increase in temperature and a 0.2-0.25 unit decrease in pH on the settlement and survival of planulae and the growth of primary polyps in the Tropical Eastern Pacific coral Porites panamensis. We found that primary polyp growth was reduced only marginally by more acidic seawater but the combined effect of high temperature and lowered pH caused a significant reduction in growth of primary polyps by almost a third. Elevated temperature was found to significantly reduce the amount of zooxanthellae in primary polyps, and when combined with lowered pH resulted in a significant reduction in biomass of primary polyps. However, survival and settlement of planula larvae were unaffected by increased temperature, lowered acidity or the combination of both. These results indicate that in future scenarios of increased temperature and oceanic acidity coral planulae will be able to disperse and settle successfully but primary polyp growth may be hampered. The recovery of reefs may therefore be impeded by global change even if local stressors are curbed and sufficient sources of planulae are available.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pore fluids from two ODP sites at Eastern Mediterranean mud volcanoes have been analyzed for their Cl concentration and their delta18O and deltaD isotopic composition. The Cl data span a wide range of concentrations, from extremely depleted with respect to seawater (as low as 60 mM) at the crest of Milano dome (site 970) to strongly enriched (up to 5.4 M) at Napoli dome (site 971). Chloride enrichment is known to be due to dissolving Messinian evaporites, whereas the source of the low-Cl fluid is deduced from stable isotope data presented here. The isotopic composition of the endmember fluid is found to be +10? for delta18O and -32? for deltaD for low- as well as for high-Cl waters. From this signature it can be concluded that neither gas hydrates nor meteoric water play a significant role in the freshening of the pore water. Several other processes altering the delta18O/deltaD composition of pore waters are discussed and considered to be of only negligible influence. The process characterizing the isotopic composition of the fluid is found to be clay mineral dehydration (mainly smectite-illite transformation), corresponding to a depth range of 3.5-7 km and an elevated temperature of about 120-165°C. A quantitative estimate shows that this reaction is capable of producing the observed extreme Cl depletion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to test whether elevated pCO2 predicted for the year 2100 (85.1 Pa) affects bleaching in the coral Seriatopora caliendrum (Ehrenberg 1834) either independently or interactively with high temperature (30.5 °C). Response variables detected the sequence of events associated with the onset of bleaching: reduction in the photosynthetic performance of symbionts as measured by maximum photochemical efficiency (F v/F m) and effective photochemical efficiency (delta F/F m') of PSII, declines in net photosynthesis (P net) and photosynthetic efficiency (alpha), and finally, reduced chlorophyll a and symbiont concentrations. S. caliendrum was collected from Nanwan Bay, Taiwan, and subjected to combinations of temperature (27.7 vs. 30.5 °C) and pCO2 (45.1 vs. 85.1 Pa) for 14 days. High temperature reduced values of all dependent variables (i.e., bleaching occurred), but high pCO2 did not affect Symbiodinium photophysiology or productivity, and did not cause bleaching. These results suggest that short-term exposure to 81.5 Pa pCO2, alone and in combination with elevated temperature, does not cause or affect coral bleaching.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thecosome pteropods (pelagic mollusks) can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO2 emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO2 levels of 280, 380, 550, 760 and 1020 µatm and at control (0°C) and elevated (4°C) temperatures. The respiration rate was unaffected by pCO2 at control temperature, but significantly increased as a function of the pCO2 level at elevated temperature. pCO2 had no effect on the gut clearance rate at either temperature. Precipitation of CaCO3, measured as the incorporation of 45Ca, significantly declined as a function of pCO2 at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems.