981 resultados para Electronic states


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photodissociation dynamics of the triatomic (or pseudo-triatomic) system in the nonadiabatic multiple electronic states is investigated by employing a time-dependent quantum wavepacket method, while the time propagation of the wave packet is carried out using the split-operator scheme. As a numerical example, the photodissociation dynamics of CH,l in three electronic states (1)Q(1)(A'), (1)Q(1)(A"), and (3)Q(0+) is studied and CH3I is treated as a pseudotriatomic model. The absorption spectra and product vibrational state distributions are calculated and compared with previous theoretical work. (C) 2004 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quantum-chemistry methods were explored to investigate the electronic structures, injection and transport properties, absorption and phosphorescence mechanism of a series of blue-emitting Ir(III) complexes {[(F-2-ppy)(2)Ir(pta -X/pyN4)], where F-2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = phenyl(1); p-tolyl (2); 2,6-difluororophenyl (3); -CF3 (4), and pyN4 = pyridine-1,2,4-tetrazolate (5)}, which are used as emitters in organic light-emitting diodes (OLEDs). The mobility of hole and electron were studied computationally based on the Marcus theory. Calculations of Ionization potentials (IPs) and electron affinities (EAs) were used to evaluate the injection abilities of holes and electrons into these complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies and dipole moments of the title molecules in neutral, positively and negatively charged ions were studied by use of density functional method. Ground electronic state was assigned for each molecule. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides ionic component, covalent bonds are formed between the metal s, d and f orbitals and oxygen p orbitals. Contrary to the well known lanthanide contraction, the bond distance is not regular from LaO to LuO for both neutral and charged molecules. An obvious population at 5d orbital was observed through the lanthanide series. 4f electrons also participate the chemical bonding for CeO to NdO and TbO to TmO. For EuO, GdO, YbO and LuO, 4f electrons tend to be localized. The spin multiplicity is regular for neutral and charged molecules. The spin multiplicity of the charged molecules can be obtained by -1 (or +1 for TbO+, DyO+, YbO- and YbO+) compared with the corresponding neutral molecules.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, electron affinities, ionization potentials and dissociation energies of the title molecules in neutral, positively and negatively charged ions were studied by use of density functional method. The calculated results were compared with previous theoretical and experimental studies. Ground states for each molecule were assigned. It was found that for some molecules, low-lying state, in which the energy is much close to the ground state, was obtained. In this case, further studies both experimentally and theoretically are necessary in order to find the true global minimum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex is an excellent white-light-emitting material. Despite some studies devoted to this complex, no information on the real origin of the unusually broad electroluminescent (EL) emission is available. Therefore, we investigate photoluminescent and EL properties of the zinc complex. Orange phosphorescent emission at 580 nm was observed for the complex in thin film at 77 K, whereas only fluorescent emission was obtained at room temperature. Molecular orbitals, excitation energy, and emission energy of the complex were investigated using quantum chemical calculations. We fabricated the device with a structure of ITO/F16CuPc(5.5 nm)/Zn-complex/Al, where F16CuPc is hexadecafluoro copper phthalocyanine. The EL spectra varied strongly with the thickness of the emissive layer. We observed a significant change in the emission spectra with the viewing angles. Optical interference effects and light emission originating both from fluorescence and from phosphorescence can explain all of the observed phenomena, resulting in the broad light emission for the devices based on the Zn complex. We calculated the charge transfer integral and the reorganization energy to explain why the Zn complex is a better electron transporter than a hole transporter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work a nonmonotonic dependence of standard rate constant (k(0)) on reorganization energy (lambda) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k(0) on lambda is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of lambda, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the lambda dependence of k(0) for Process I is monotonic thoroughly, while for Process II on electrode surface the lambda dependence of k(0) could show a nonmonotonicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electroreduction of vitamin B-2 (VB2) was studied by in situ circular dichroism (CD) spectroelectrochemistry (SEC) with a long optical path length thin layer cell (LOPLTLC). The results showed that the electroreduction of VB2 in phosphate buffer solution (PBS) (PH 6.8) was a two-electron electrochemical process with weak adsorption of the reactant at the glassy carbon (GC) electrode surface. The CD spectra change of VB2 in the reduction process was explained with the theory of electronic states. We also treated the CD spectra with a singular value decomposition least square (SVDLS) method, and have found not only the number of components and their spectra, but also the fraction distribution of each component in the electroreduction process of VB2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the electron paramagnetic resonance (EPR) spectra of undoped, FeCl3- and iodine-doped poly(para-phenylene) (PPP) prepared by the method of Kovacic. EPR measurements are used to characterize electronic states relevant for carrier transport in doped PPP. We found a novel dependence of room temperature linewidth (DELTAH(pp)) and spin density (N(spin)) on the dopant concentrations for iodine-doped PPP, namely, DELTAH(pp) first decreased and increased, and then decreased and increased again with increasing iodine concentration in the iodine-doped PPP. The corresponding value of N(spin) first increased and decreased, and then increased and decreased again with increasing iodine concentration in PPP. However, the changes in DELTAH(pp) and N(spin) with FeCl3 concentration in FeCl3-doped PPP differ from those of iodine-doped PPP. We explain the different EPR properties in FeCl3-doped and iodine-doped PPP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photodissociation of CH2BrCH2Cl at 266 nm has been investigated on the universal crossed molecular beam machine. The primary dissociation step leads exclusively to the formation of CH2CH2Cl radicals and Br atoms in the electronic ground state as well as in the spin-orbit excited state, with a branching ratio 2 +/- 1:8 +/- 1. Photofragment total c.m. translational energy distribution P(E-t) has been obtained and about 64% of the available energy is partitioned into translational energy for Br channel and about 28.5% of the available energy is partitioned into translational energy for Br* channel. The anisotropy parameters are determined to be beta(Br*) = 0.8 +/- 0.2 and beta(Br) = -0.6 +/- 0.2, respectively. Some CH2CH2Cl radicals with large internal excitation (corresponding to formation of ground state Br channel) may undergo secondary dissociation to form CH2CH2 +/- Cl. The experimental results are discussed in terms of a model that involves the initial excitation of two repulsive electronic states: one from an parallel transition to the (3)Q(0) state, and the other from a perpendicular transition to the (3)Q(1), (1)Q states. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Amorphous silicon has become the material of choice for many technologies, with major applications in large area electronics: displays, image sensing and thin film photovoltaic cells. This technology development has occurred because amorphous silicon is a thin film semiconductor that can be deposited on large, low cost substrates using low temperature. In this thesis, classical molecular dynamics and first principles DFT calculations have been performed to generate structural models of amorphous and hydrogenated amorphous silicon and interfaces of amorphous and crystalline silicon, with the ultimate aim of understanding the photovoltaic properties of core-shell crystalline amorphous Si nanowire structures. We have shown, unexpectedly, from the simulations, that our understanding of hydrogenated bulk a-Si needs to be revisited, with our robust finding that when fully saturated with hydrogen, bulk a-Si exhibits a constant optical energy gap, irrespective of the hydrogen concentration in the sample. Unsaturated a-Si:H, with a lower than optimum hydrogen content, shows a smaller optical gap, that increases with hydrogen content until saturation is reached. The mobility gaps obtained from an analysis of the electronic states show similar behavior. We also obtained that the optical and mobility gaps show a volcano curve as the H content is varied from 7% (undersaturation) to 18% (mild oversaturation). In the case of mild over saturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structures shows the extra H atoms in this case form a bridge between neighboring silicon atoms which increases the corresponding Si-Si distance and promotes bond length disorder in the sample. That has the potential to enhance the Staebler-Wronski effect. Planar interface models of amorphous-crystalline silicon have been generated in Si (100), (110) and (111) surfaces. The interface models are characterized by structure, RDF, electronic density of states and optical absorption spectrum. We find that the least stable (100) surface will result in the formation of the thickest amorphous silicon layer, while the most stable (110) surface forms the smallest amorphous region. We calculated for the first time band offsets of a-Si:H/c-Si heterojunctions from first principles and examined the influence of different surface orientations and amorphous layer thickness on the offsets and implications for device performance. The band offsets depend on the amorphous layer thickness and increase with thickness. By controlling the amorphous layer thickness we can potentially optimise the solar cell parameters. Finally, we have successfully generated different amorphous layer thickness of the a-Si/c-Si and a-Si:H/c-Si 5 nm nanowires from heat and quench. We perform structural analysis of the a-Si-/c-Si nanowires. The RDF, Si-Si bond length distributions, and the coordination number distributions of amorphous regions of the nanowires reproduce similar behaviour compared to bulk amorphous silicon. In the final part of this thesis we examine different surface terminating chemical groups, -H, - OH and –NH2 in (001) GeNW. Our work shows that the diameter of Ge nanowires and the nature of surface terminating groups both play a significant role in both the magnitude and the nature of the nanowire band gaps, allowing tuning of the band gap by up to 1.1 eV. We also show for the first time how the nanowire diameter and surface termination shifts the absorption edge in the Ge nanowires to longer wavelengths. Thus, the combination of nanowire diameter and surface chemistry can be effectively utilised to tune the band gaps and thus light absorption properties of small diameter Ge nanowires.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The establishment of conductive graphene-molecule-graphene junction is investigated through first-principles electronic structure calculations and quantum transport calculations. The junction consists of a conjugated molecule connecting two parallel graphene sheets. The effects of molecular electronic states, structure relaxation, and molecule-graphene contact on the conductance of the junction are explored. A conductance as large as 0.38 conductance quantum is found achievable with an appropriately oriented dithiophene bridge. This work elucidates the designing principles of promising nanoelectronic devices based on conductive graphene-molecule-graphene junctions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spectroscopy and metastability of the carbon dioxide doubly charged ion, the CO22+ dication, have been studied with photoionization experiments: time-of-flight photoelectron photoelectron coincidence (TOF-PEPECO), threshold photoelectrons coincidence (TPEsCO), and threshold photoelectrons and ion coincidence (TPEsCO ion coincidence) spectroscopies. Vibrational structure is observed in TOF-PEPECO and TPEsCO spectra of the ground and first two excited states. The vibrational structure is dominated by the symmetric stretch except in the TPEsCO spectrum of the ground state where an antisymmetric stretch progression is observed. All three vibrational frequencies are deduced for the ground state and symmetric stretch and bending frequencies are deduced for the first two excited states. Some vibrational structure of higher electronic states is also observed. The threshold for double ionization of carbon dioxide is reported as 37.340+/-0.010 eV. The fragmentation of energy selected CO22+ ions has been investigated with TPEsCO ion coincidence spectroscopy. A band of metastable states from similar to38.7 to similar to41 eV above the ground state of neutral CO2 has been observed in the experimental time window of similar to0.1-2.3 mus with a tendency towards shorter lifetimes at higher energies. It is proposed that the metastability is due to slow spin forbidden conversion from bound excited singlet states to unbound continuum states of the triplet ground state. Another result of this investigation is the observation of CO++O+ formation in indirect dissociative double photoionization below the threshold for formation of CO22+. The threshold for CO++O+ formation is found to be 35.56+/-0.10 eV or lower, which is more than 2 eV lower than previous measurements. (C) 2005 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A tight-binding model is developed to describe the electron-phonon coupling in atomic wires under an applied voltage and to model, their inelastic current-voltage spectroscopy. Particular longitudinal phonons are found to have greatly enhanced coupling to the electronic states of the system. This leads to a large drop in differential conductance at threshold energies associated with these phonons. It is found that with increasing tension these energies decrease, while the size of the conductance drops increases, in agreement with experiment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (~25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (similar or equal to 25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.