998 resultados para Electricity Planning
Resumo:
The analysis of investment in the electric power has been the subject of intensive research for many years. The efficient generation and distribution of electrical energy is a difficult task involving the operation of a complex network of facilities, often located over very large geographical regions. Electric power utilities have made use of an enormous range of mathematical models. Some models address time spans which last for a fraction of a second, such as those that deal with lightning strikes on transmission lines while at the other end of the scale there are models which address time horizons consisting of ten or twenty years; these usually involve long range planning issues. This thesis addresses the optimal long term capacity expansion of an interconnected power system. The aim of this study has been to derive a new, long term planning model which recognises the regional differences which exist for energy demand and which are present in the construction and operation of power plant and transmission line equipment. Perhaps the most innovative feature of the new model is the direct inclusion of regional energy demand curves in the nonlinear form. This results in a nonlinear capacity expansion model. After review of the relevant literature, the thesis first develops a model for the optimal operation of a power grid. This model directly incorporates regional demand curves. The model is a nonlinear programming problem containing both integer and continuous variables. A solution algorithm is developed which is based upon a resource decomposition scheme that separates the integer variables from the continuous ones. The decompostion of the operating problem leads to an interactive scheme which employs a mixed integer programming problem, known as the master, to generate trial operating configurations. The optimum operating conditions of each trial configuration is found using a smooth nonlinear programming model. The dual vector recovered from this model is subsequently used by the master to generate the next trial configuration. The solution algorithm progresses until lower and upper bounds converge. A range of numerical experiments are conducted and these experiments are included in the discussion. Using the operating model as a basis, a regional capacity expansion model is then developed. It determines the type, location and capacity of additional power plants and transmission lines, which are required to meet predicted electicity demands. A generalised resource decompostion scheme, similar to that used to solve the operating problem, is employed. The solution algorithm is used to solve a range of test problems and the results of these numerical experiments are reported. Finally, the expansion problem is applied to the Queensland electricity grid in Australia
Resumo:
The present paper examines whether the potential advantages of the expanding practice of web-based public participation only complement the benefits of the traditional techniques, or are empowering enough to replace them. The question is examined in a real-world case of neighbourhood revitalization, in which both techniques were practiced simultaneously. Comparisons are made at four major planning junctions, in order to study the contributions of each technique to the qualities of involvement, trust, and empowerment. The results show that web-based participants not only differ from the participants of traditional practices, but they also differ from each other on the basis of their type of web participation. The results indicate that web-based participation is an effective and affective complementary means of public participation, but it cannot replace the traditional unmediated techniques.
Resumo:
Despite the general evolution and broadening of the scope of the concept of infrastructure in many other sectors, the energy sector has maintained the same narrow boundaries for over 80 years. Energy infrastructure is still generally restricted in meaning to the transmission and distribution networks of electricity and, to some extent, gas. This is especially true in the urban development context. This early 20th century system is struggling to meet community expectations that the industry itself created and fostered for many decades. The relentless growth in demand and changing political, economic and environmental challenges require a shift from the traditional ‘predict and provide’ approach to infrastructure which is no longer economically or environmentally viable. Market deregulation and a raft of demand and supply side management strategies have failed to curb society’s addiction to the commodity of electricity. None of these responses has addressed the fundamental problem. This chapter presents an argument for the need for a new paradigm. Going beyond peripheral energy efficiency measures and the substitution of fossil fuels with renewables, it outlines a new approach to the provision of energy services in the context of 21st century urban environments.
Resumo:
Abstract Providing water infrastructure in times of accelerating climate change presents interesting new problems. Expanding demands must be met or managed in contexts of increasingly constrained sources of supply, raising ethical questions of equity and participation. Loss of agricultural land and natural habitats, the coastal impacts of desalination plants and concerns over re-use of waste water must be weighed with demand management issues of water rationing, pricing mechanisms and inducing behaviour change. This case study examines how these factors impact on infrastructure planning in South East Queensland, Australia: a region with one of the developed world’s most rapidly growing populations, which has recently experienced the most severe drought in its recorded history. Proposals to match forecast demands and potential supplies for water over a 20 year period are reviewed by applying ethical principles to evaluate practical plans to meet the water needs of the region’s activities and settlements.
Resumo:
Current rapid increases in the scope of regional development and the reach of technology have combined with the expanding scale of modern settlements to focus growing attention on infrastructure provisionneeds. This has included organisational and funding systems, the management of new technologies and regional scale social provisions. In this chapter, the evolution of urban and regional infrastructure is traced from its earliest origins in the growth of organized societies of 5 ,000 years ago. Infrastructure needs and provision are illustrated for the arenas of metropolitan, provincial and rural regions. Rural infrastructure examples and lessons are drawn from global case studies. Recent expansions of the scope of infrastructure are examined and issues of governance and process discussed. Phased planning processes are related to cycles of program adoption, objective formulation, option evaluation and programme budgeting. Issues of privatisation and public interest are considered. Matters of contemporary global significance are explored, including the current economic contraction and the effects of global climate change. Conclusions are drawn about the role and importance of linking regional planning to coherent regional infrastructure programs and budgets
Resumo:
Introduction - The planning for healthy cities faces significant challenges due to lack of effective information, systems and a framework to organise that information. Such a framework is critical in order to make accessible and informed decisions for planning healthy cities. The challenges for planning healthy cities have been magnified by the rise of the healthy cities movement, as a result of which, there have been more frequent calls for localised, collaborative and knowledge-based decisions. Some studies have suggested that the use of a ‘knowledge-based’ approach to planning will enhance the accuracy and quality decision-making by improving the availability of data and information for health service planners and may also lead to increased collaboration between stakeholders and the community. A knowledge-based or evidence-based approach to decision-making can provide an ‘out-of-the-box’ thinking through the use of technology during decision-making processes. Minimal research has been conducted in this area to date, especially in terms of evaluating the impact of adopting knowledge-based approach on stakeholders, policy-makers and decision-makers within health planning initiatives. Purpose – The purpose of the paper is to present an integrated method that has been developed to facilitate a knowledge-based decision-making process to assist health planning Methodology – Specifically, the paper describes the participatory process that has been adopted to develop an online Geographic Information System (GIS)-based Decision Support System (DSS) for health planners. Value – Conceptually, it is an application of Healthy Cities and Knowledge Cities approaches which are linked together. Specifically, it is a unique settings-based initiative designed to plan for and improve the health capacity of Logan-Beaudesert area, Australia. This setting-based initiative is named as the Logan-Beaudesert Health Coalition (LBHC). Practical implications - The paper outlines the application of a knowledge-based approach to the development of a healthy city. Also, it focuses on the need for widespread use of this approach as a tool for enhancing community-based health coalition decision making processes.
Resumo:
The reliability of Critical Infrastructure is considered to be a fundamental expectation of modern societies. These large-scale socio-technical systems have always, due to their complex nature, been faced with threats challenging their ongoing functioning. However, increasing uncertainty in addition to the trend of infrastructure fragmentation has made reliable service provision not only a key organisational goal, but a major continuity challenge: especially given the highly interdependent network conditions that exist both regionally and globally. The notion of resilience as an adaptive capacity supporting infrastructure reliability under conditions of uncertainty and change has emerged as a critical capacity for systems of infrastructure and the organisations responsible for their reliable management. This study explores infrastructure reliability through the lens of resilience from an organisation and system perspective using two recognised resilience-enhancing management practices, High Reliability Theory (HRT) and Business Continuity Management (BCM) to better understand how this phenomenon manifests within a partially fragmented (corporatised) critical infrastructure industry – The Queensland Electricity Industry. The methodological approach involved a single case study design (industry) with embedded sub-units of analysis (organisations), utilising in-depth interviews and document analysis to illicit findings. Derived from detailed assessment of BCM and Reliability-Enhancing characteristics, findings suggest that the industry as a whole exhibits resilient functioning, however this was found to manifest at different levels across the industry and in different combinations. Whilst there were distinct differences in respect to resilient capabilities at the organisational level, differences were less marked at a systems (industry) level, with many common understandings carried over from the pre-corporatised operating environment. These Heritage Factors were central to understanding the systems level cohesion noted in the work. The findings of this study are intended to contribute to a body of knowledge encompassing resilience and high reliability in critical infrastructure industries. The research also has value from a practical perspective, as it suggests a range of opportunities to enhance resilient functioning under increasingly interdependent, networked conditions.