940 resultados para Electrical-stimulation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The giant panda skeletal muscle cells, uterus epithelial cells and mammary gland cells from an adult individual were cultured and used as nucleus donor for the construction of interspecies embryos by transferring them into enucleated rabbit eggs. All the three kinds of somatic cells were able to reprogram in rabbit ooplasm and support early embryo development, of which mammary gland cells were proven to be the Lest, followed by uterus epithelial cells and skeletal muscle cells. The experiments showed that direct injection of mammary gland cell into enucleated rabbit ooplasm, combined with in vivo development in ligated rabbit oviduct, achieved higher blastocyst development than in vitro culture after the somatic cell was injected into the perivitelline space and fused with the enucleated egg by electrical stimulation. The chromosome analysis demonstrated that the genetic materials in reconstructed blastocyst cells were the same as that in panda somatic cells. In addition, giant panda mitochondrial DNA (mtDNA) was shown to exist in the interspecies reconstructed blastocyst. The data suggest that (i) the ability of ooplasm to dedifferentiate somatic cells is not species-specific; (ii) there is compatibility between interspecies somatic nucleus and ooplasm during early development of the reconstructed egg.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three homologous short-chain neurotoxins, named NT1, NT2 and NT3, were purified from the venom of Naja kaouthia. NT1 has an identical amino acid sequence to cobrotoxin from Naja naja atra [Biochemistry 32 (1993) 2131]. NT3 shares the same sequence with cobrotoxin b [J. Biochem. (Tokyo) 122 (1997) 1252], whereas NT2 is a novel 6 1 -residue neurotoxin. Tests of their physiological functions indicate that NT1 shows a greater inhibition of muscle contraction induced by electrical stimulation of the nerve than do NT2 and NT3. Homonuclear proton two-dimensional NMR methods were utilized to study the solution tertiary structure of NT2. A homology model-building method was employed to predict the structure of NT3. Comparison of the structures of these three toxins shows that the surface conformation of NT1 facilitates the substituted base residues, Arg28, Arg30, and Arg36, to occupy the favorable spatial location in the central region of loop 11, and the cation groups of all three arginines face out of the molecular surface of NT1 This may contribute greatly to the higher binding of NT1 with AchR compared to NT2 and NT3. (C) 2002 Elsevier Science B,V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oculomotor tracking of moving objects is an important component of visually based cognition and planning. Such tracking is achieved by a combination of saccades and smooth pursuit eye movements. In particular, the saccadic and smooth pursuit systems interact to often choose the same target, and to maximize its visibility through time. How do multiple brain regions interact, including frontal cortical areas, to decide the choice of a target among several competing moving stimuli? How is target selection information that is created by a bias (e.g., electrical stimulation) transferred from one movement system to another? These saccade-pursuit interactions are clarified by a new computational neural model, which describes interactions among motion processing areas MT, MST, FPA, DLPN; saccade specification, selection, and planning areas LIP, FEF, SNr, SC; the saccadic generator in the brain stem; and the cerebellum. Model simulations explain a broad range of neuroanatomical and neurophysiological data. These results are in contrast with the simplest parallel model with no interactions between saccades and pursuit than common-target selection and recruitment of shared motoneurons. Actual tracking episodes in primates reveal multiple systematic deviations from predictions of the simplest parallel model, which are explained by the current model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellular therapies have recently employed the use of small RNA molecules, particularly microRNAs (miRNAs), to regulate various cellular processes that may be altered in disease states. In this study, we examined the effect of transient muscle-specific miRNA inhibition on the function of three-dimensional skeletal muscle cultures, or bioartificial muscles (BAMs). Skeletal myoblast differentiation in vitro is enhanced by inhibiting a proliferation-promoting miRNA (miR-133) expressed in muscle tissues. As assessed by functional force measurements in response to electrical stimulation at frequencies ranging from 0 to 20 Hz, peak forces exhibited by BAMs with miR-133 inhibition (anti-miR-133) were on average 20% higher than the corresponding negative control, although dynamic responses to electrical stimulation in miRNA-transfected BAMs and negative controls were similar to nontransfected controls. Immunostaining for alpha-actinin and myosin also showed more distinct striations and myofiber organization in anti-miR-133 BAMs, and fiber diameters were significantly larger in these BAMs over both the nontransfected and negative controls. Compared to the negative control, anti-miR-133 BAMs exhibited more intense nuclear staining for Mef2, a key myogenic differentiation marker. To our knowledge, this study is the first to demonstrate that miRNA mediation has functional effects on tissue-engineered constructs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Purpose—Severe upper limb paresis is a major contributor to disability after stroke. This study investigated the efficacy of a new nonrobotic training device, the Sensorimotor Active Rehabilitation Training (SMART) Arm, that was used with or without electromyography-triggered electrical stimulation of triceps brachii to augment elbow extension, permitting stroke survivors with severe paresis to practice a constrained reaching task.

Methods—A single-blind, randomized clinical trial was conducted with 42 stroke survivors with severe and chronic paresis. Thirty-three participants completed the study, of whom 10 received training using the SMART Arm with electromyography-triggered electrical stimulation, 13 received training using the SMART Arm alone, and 10 received no intervention (control). Training consisted of 12 1-hour sessions over 4 weeks. The primary outcome measure was “upper arm function,” item 6 of the Motor Assessment Scale. Secondary outcome measures included impairment measures; triceps muscle strength, reaching force, modified Ashworth scale; and activity measures: reaching distance and Motor Assessment Scale. Assessments were administered before (0 weeks) and after training (4 weeks) and at 2 months follow-up (12 weeks).

Results—Both SMART Arm groups demonstrated significant improvements in all impairment and activity measures after training and at follow-up. There was no significant difference between these 2 groups. There was no change in the control group.

Conclusions—Our findings indicate that training of reaching using the SMART Arm can reduce impairment and improve activity in stroke survivors with severe and chronic upper limb paresis, highlighting the benefits of intensive task-oriented practice, even in the context of severe paresis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This exploratory study was undertaken to investigate the mechanisms that contributed to improvements in upper limb function following a novel training program. Surface electromyography (EMG) was used to examine training-induced changes in the pattern of triceps and biceps activation during reaching tasks in stroke survivors with severe paresis in the chronic stage of recovery. The EMG data were obtained in the context of a single blind randomised clinical trial conducted with 42 stroke survivors with minimal upper limb muscle activity and who were more than 6 months post-stroke. Of the 33 participants who completed the study, 10 received training of reaching using a non-robotic upper limb training device, the SMART Arm, with EMG triggered functional electrical stimulation (EMG-stim), 13 received training of reaching using the SMART Arm alone, and 10 received no intervention. Each intervention group engaged in 12 1-h training sessions over a 4-week period. Clinical and laboratory measures of upper limb function were administered prior to training (0 weeks), at completion (4 weeks) and 2 months (12 weeks) after training. The primary outcome measure was 'upper arm function' which is Item 6 of the Motor Assessment Scale (MAS). Laboratory measures consisted of two multijoint reaching tasks to assess 'maximum isometric force' and 'maximum distance reached'. Surface EMG was used to monitor triceps brachii and biceps brachii during the two reaching tasks. To provide a comparison with normal values, seven healthy adults were tested on one of the reaching tasks according to the same procedure. Study findings demonstrated a statistically significant improvement in upper limb function for stroke participants in the two training groups compared to those who received no training however no difference was found between the two training groups. For the reaching tasks, all stroke participants, when compared to normal healthy adults, exhibited lower triceps and biceps activation and a lower ratio of triceps to biceps activation. Following training, stroke participants demonstrated increased triceps activation and an increased ratio of triceps to biceps activation for the task that was trained. Better performance was associated with greater triceps activation and a higher ratio of triceps to biceps activation. The findings suggest that increased activation of triceps as an agonist and an improved coordination between triceps and biceps could have mediated the observed changes in arm function. The changes in EMG activity were small relative to the changes in arm function indicating that factors, such as the contribution of other muscles of reaching, may also be implicated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Waxy Monkey Leaf Frog, Phyllomedusa sauvagei, has been extensively-studied for many years, and a broad spectrum of bioactive peptides has been found in its skin secretions. Here we report the discovery of a novel tryptophyllin (TPH) peptide, named PsT-1, from this frog species. Skin secretions from specimens of P. sauvagei were collected by mild electrical stimulation. Peptides were identified and characterized by transcriptome cloning, and the structure was confirmed by MALDI-TOF mass spectrometry and automated Edman degradation. This novel peptide was encoded by a single precursor of 61 amino acid residues, whose primary structure was deduced from cloned skin cDNA. Analysis of different amphibian tryptophyllins revealed that PsT-1 exhibited a high degree of primary structural similarity to its homologues, PdT-1 and PdT-2, from the Mexican giant leaf frog, Pachymedusa dacnicolor. A synthetic replicate of PsT-1 was found to inhibit bradykinin-induced vasorelaxation of phenylephrine pre-constricted rat tail artery smooth muscle. It was also found that PsT-1 had an anti-proliferative effect on three different human prostate cancer cell lines (LNCaP/PC3/DU145), by use of an MTT assay coupled with direct cell counting as measures of cell growth. These data indicate that PsT-1 is a likely bradykinin receptor antagonist and its biological effects are probably mediated through bradykinin receptors. As a BK antagonist, PST-1, with antagonistic effects on BK in artery smooth muscle, inhibition of proliferation in prostate cancer cells and lack of undesirable side effects, may have potential in cardiovascular, inflammatory and anticancer therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recovery of upper limb function after stroke is poor. The acute to subacute phase after stroke is the optimal time window to promote the recovery of upper limb function. The dose and content of training provided conventionally during this phase is however, unlikely to be adequate to drive functional recovery, especially in the presence of severe motor disability. The current study concerns an approach to address this shortcoming, through evaluation of the SMART Arm, a non-robotic device that enables intensive and repetitive practice of reaching by stroke survivors with severe upper limb disability, with the aim of improving upper limb function. The outcomes of SMART Arm training with or without outcome-triggered electrical stimulation (OT-stim) to augment movement and usual therapy will be compared to usual therapy alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The motor points of the skeletal muscles, mainly of interest to anatomists and physiologists, have recently attracted much attention from researchers in the field of functional electrical stimulation. The muscle motor point has been defined as the entry point of the motor nerve branch into the epimysium of the muscle belly. Anatomists have pointed out that many muscles in the limbs have multiple motor points. Knowledge of the location of nerve branches and terminal nerve entry points facilitates the exact insertion and the suitable selection of the number of electrodes required for each muscle for functional electrical stimulation. The present work therefore aimed to describe the number, location, and distribution of motor points in the human forearm muscles to obtain optimal hand function in many clinical situations. Twenty three adult human cadaveric forearms were dissected. The numbers of primary nerves and motor points for each muscle were tabulated. The mean numbers and the standard deviation were calculated and grouped in tables. Data analyses were performed with the use of a statistical analysis package (SPSS 13.0). The proximal third of the muscle was the usual part of the muscle that received the motor points. Most of the forearm muscles were innervated from the lateral side and deep surface of the muscle. The information in this study may also be usefully applied in selective denervation procedures to balance muscles in spastic upper limbs. Copyright © 2007 Via Medica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patients with intractably diminished bladder storage function are encountered frequently by neurourologists, occasionally requiring reconstructive surgery for appropriate resolution. Although sacral neuromodulation is a recognized effective therapeutic modality, present techniques are technically demanding, invasive, and expensive. This study investigated the effect of non-invasive third sacral nerve (S3) stimulation on bladder activity during filling cystometry. One hundred forty-six patients underwent standard urodynamic filling cystometry that was then immediately repeated. Patients in the study group (n = 74) received antidromic transcutaneous sacral neurostimulation during the second fill and the control group (n = 72) underwent a second fill without neurostimulation. A statistically significant increase in bladder storage capacity without a corresponding rise in detrusor pressure was observed in the neurostimulated patients. This improvement in functional capacity is an encouraging finding that further supports the use of this non-invasive treatment modality in clinical practice. Neurourol. Urodynam. 20:73-84. 2001. (C) 2001 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

with refractory irritative voiding dysfunction. Following an initial response, patients may successfully apply this treatment themselves to ensure long-term relief. Objective: Patients with irritative voiding dysfunction are often unresponsive to standard clinical treatment. We evaluated the response of such individuals to transcutaneous electrical stimulation of the third sacral nerve. Methods: 32 patients with refractory irritative voiding dysfunction (31 female and 1 male; mean age 47 years) were recruited to the study. Ambulatory transcutaneous electrical neurostimulation was applied bilaterally to the third sacral dermatomes for 1 week. Symptoms of frequency, nocturia, urgency, and bladder pain were scored by each patient throughout and up to 6 months following treatment. Results: The mean daytime frequency was reduced from 11.3 to 7.96 (p = 0.01). Nocturia episodes were reduced from a mean of 2.6 to 1.8 (p = 0.01). Urgency and bladder pain mean symptom scores were reduced from 5.97 to 4.89 and from 1.48 to 0.64, respectively. After stopping therapy, symptoms returned to pretreatment levels within 2 weeks in 40% of the patients and within 6 months in 100%, Three patients who continued with neurostimulation remained satisfied with this treatment modality at 6 months. Conclusions: Transcutaneous third sacral nerve stimulation may be an effective and noninvasive ambulatory technique for the treatment of patients with refractory irritative voiding dysfunction. Following an initial response, patients may successfully apply this treatment themselves to ensure long-term relief.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stroke survivors often have upper limb (UL) hemiparesis, limiting their ability to perform activities of daily life (ADLs). Intensive, task-oriented exercise therapy (ET) can improve UL function, but motivation to perform sufficient ET is difficult to maintain. Here we report on a trial in which a workstation was deployed in the homes of chronic stroke survivors to enable tele-coaching of ET in the guise of computer games. Participants performed 6 weeks of 1 hour/day, 5 days/week ET. Hand opening and grasp were assisted with functional electrical stimulation (FES). The primary outcome measure was the Action Research Arm Test (ARAT). Secondary outcome measures included a quantitative test of UL function performed on the workstation, grasp force measurements and transcranial magnetic stimulation (TMS). Improvements were seen in the functional tests, but surprisingly, not in the TMS responses. An important finding was that participants commencing with intermediate functional scores improved the most.

CONCLUSIONS: 1) Daily, tele-supervised FES-ET in chronic stroke survivors is feasible with commercially-available technology. 2) The intervention can significantly improve UL function, particularly in people who start with an intermediate level of function. 3) Significant improvements in UL function can occur in the absence of changes in TMS responses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present thesis aims to develop a biocompatible and electroconductor bone graft containing carbon nanotubes (CNTs) that allows the in situ regeneration of bone cells by applying pulsed external electrical stimuli. The CNTs were produced by chemical vapor deposition (CVD) by a semi-continuous method with a yield of ~500 mg/day. The deposition parameters were optimised to obtain high pure CNTs ~99.96% with controlled morphologies, fundamental requisites for the biomedical application under study. The chemical functionalisation of CNTs was also optimised to maximise their processability and biocompatibility. The CNTs were functionalised by the Diels-Alder cycloaddition of 1,3-butadiene. The biological behaviour of the functionalised CNTs was evaluated in vitro with the osteoblastic cells line MG63 and in vivo, by subcutaneous implantation in rats. The materials did not induce an expressed inflammatory response, but the functionalised CNTs showed a superior in vitro and in vivo biocompatibility than the non-functionalised ones. Composites of ceramic matrix, of bioglass (Glass) and hydroxyapatite (HA), reinforced with carbon nanotubes (CNT/Glass/HA) were processed by a wet approach. The incorporation of just 4.4 vol% of CNTs allowed the increase of 10 orders of magnitude of the electrical conductivity of the matrix. In vitro studies with MG63 cells show that the CNT/Glass/HA composites guarantee the adhesion and proliferation of bone cells, and stimulate their phenotype expression, namely the alkaline phosphate (ALP). The interactions between the composite materials and the culture medium (α-MEM), under an applied electrical external field, were studied by scanning vibrating electrode technique. An increase of the culture medium electrical conductivity and the electrical field confinement in the presence of the conductive samples submerged in the medium was demonstrated. The in vitro electrical stimulation of MG63 cells on the conductive composites promotes the increase of the cell metabolic activity and DNA content by 130% and 60%, relatively to the non-stimulated condition, after only 3 days of daily stimulation of 15 μA for 15 min. Moreover, the osteoblastic gene expression for Runx2, osteocalcin (OC) and ALP was enhanced by 80%, 50% and 25%, after 5 days of stimulation. Instead, for dielectric materials, the stimulus delivering was less efficient, giving an equal or lower cellular response than the non-stimulated condition. The proposed electroconductive bone grafts offer exciting possibilities in bone regeneration strategies by delivering in situ electrical stimulus to cells and consequent control of the new bone tissue formation rate. It is expected that conductive smart biomaterials might turn the selective bone electrotherapy of clinical relevance by decreasing the postoperative healing times.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introdução: A Lesão Medular (LM) é um dos mais devastadores e traumáticos eventos que um Ser Humano pode vivenciar do ponto de vista clínico e emocional, demonstrando-se fundamental a disponibilização de recursos específicos para que o indivíduo possa enfrentar e gerir a sua nova realidade da melhor maneira possível. Alguns estudos têm vindo a demonstrar os benefícios de programas de reabilitação com estimulação elétrica funcional (EEF). Portanto, é de importante relevância perceber os reais efeitos da intervenção na recuperação de indivíduos com este diagnóstico. Objetivo: Analisar as evidências de abordagens de aplicação de correntes de estimulação elétrica funcional (EEF) para coadjuvar na reabilitação em adultos com lesão medular completa. Métodos: Foi conduzida uma pesquisa dos artigos preferencialmente estudos randomized controlled trials RCT´s e estudos quasi-experimentais com os mesmos participantes foram admitidos complementarmente aos experimentais compreendidos entre 2004 e 2013, bem como as citações e as referências bibliográficas de cada estudo nas principais bases de dados de ciências da saúde (Elsevier – Science Direct, Highwire Press, PEDro, PubMed, Scielo Portugal, Clinical Key, B-on, Biomed Central, LILACS- Literatura Latino-Americana e do Caribe em Ciências da Saúde) com as palavras-chave: “spinal cord injuries”, “rehabilitation, electric stimulation funtional”, “FES”, “therapy” em todas as combinações possíveis. Os estudos RCT’s foram analisados independentemente por dois revisores quanto aos critérios de inclusão e qualidade dos estudos. Resultados: Dos 857 estudos identificados apenas sete foram incluídos. Destes, dois apresentaram um score 3/10, um apresentou 4/10, um apresentou um score 5/10. O score total bem como o preenchimento ou não de cada critério encontram-se detalhados na tabela 1 e organizados por ordem alfabética de autores. Todos os estudos incluíram indivíduos com Lesão Medular Completa, idades entre 16 e 68 anos com diagnóstico de acordo com a American Spinal Injury Association (ASIA).Os programas de intervenção dividiram-se em programas de programas de força, densidade mineral óssea, cardiorrespiratório e de atividade física. Dos estudos incluídos, cinco apresentaram melhorias na reabilitação funcional para o grupo experimental, demonstrando assim uma influência positiva da estimulação elétrica funcional em lesões medulares completas. Apenas dois estudos não apresentaram diferenças estatisticamente significativas com relevância clínica. Conclusão: Há uma tendência notória do benefício dos programas com EEF em pacientes com lesões medulares completas parece melhorar a capacidade cardiorrespiratória, a densidade mineral óssea, a força e atividade física, dos indivíduos. Contudo, mais estudos com elevada qualidade metodológica serão essenciais para conceber o real efeito da sua aplicação. Palavras-chave: lesão medular completa; estimulação elétrica funcional, randomized controlled trials, revisão sistemática.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT: The physical therapy (PT) associated with standard drug treatment (SDT) in Bell palsy has never been investigated. Randomized controlled trials or quasirandomized controlled trials have compared facial PT (except treatments such as acupuncture and osteopathic) combined with SDT against a control group with SDT alone. Participants included those older than 15 yrs with a clinical diagnosis of Bell palsy, and the primary outcome measure was motor function recovery by the House-Brackmann scale. The methodologic quality of each study was also independently assessed by two reviewers using the PEDro scale. Four studies met the inclusion criteria. Three trials indicate that PT in association with SDT supports higher motor function recovery than SDT alone between 15 days and 1 yr of follow-up. On the other hand, one trial showed that electrical stimulation added to conventional PT with SDT did not influence treatment outcomes. The present review suggests that the current practice of Bell palsy treatment by PT associated with SDT seems to have a positive effect on grade and time recovery compared with SDT alone. However, there is very little quality evidence from randomized controlled trials, and such evidence is insufficient to decide whether combined treatment is beneficial in the management of Bell palsy.