893 resultados para Electrical impedance tomography, Calderon problem, factorization method
Resumo:
A large and complex IT project may involve multiple organizations and be constrained within a temporal period. An organization is a system comprising of people, activities, processes, information, resources and goals. Understanding and modelling such a project and its interrelationship with relevant organizations are essential for organizational project planning. This paper introduces the problem articulation method (PAM) as a semiotic method for organizational infrastructure modelling. PAM offers a suite of techniques, which enables the articulation of the business, technical and organizational requirements, delivering an infrastructural framework to support the organization. It works by eliciting and formalizing (e. g. processes, activities, relationships, responsibilities, communications, resources, agents, dependencies and constraints) and mapping these abstractions to represent the manifestation of the "actual" organization. Many analysts forgo organizational modelling methods and use localized ad hoc and point solutions, but this is not amenable for organizational infrastructures modelling. A case study of the infrared atmospheric sounding interferometer (IASI) will be used to demonstrate the applicability of PAM, and to examine its relevancy and significance in dealing with the innovation and changes in the organizations.
Resumo:
We propose a numerical method to approximate the solution of second order elliptic problems in nonvariational form. The method is of Galerkin type using conforming finite elements and applied directly to the nonvariational (nondivergence) form of a second order linear elliptic problem. The key tools are an appropriate concept of “finite element Hessian” and a Schur complement approach to solving the resulting linear algebra problem. The method is illustrated with computational experiments on three linear and one quasi-linear PDE, all in nonvariational form.
Resumo:
The selective determination of alcohol molecules either in aqueous solutions or in vapor phase is of great importance for several technological areas. In the last years, a number of researchers have reported the fabrication of highly sensitive sensors for ethanol detection, based upon specific enzymatic reactions occurring at the surface of enzyme-containing electrodes. In this study, the enzyme alcohol dehydrogenase (ADH) was immobilized in a layer-by-layer fashion onto Au-interdigitated electrodes (IDEs), in conjunction with layers of PAMAM dendrimers. The immobilization process was followed in Teal time using quartz crystal microbalance (QCM), indicating that an average mass of 52.1 ng of ADH was adsorbed at each deposition step. Detection was carried out using a novel strategy entirely based upon electrical capacitance measurements, through which ethanol could be detected at concentrations of 1 part per million by volume (ppmv). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A comparative study of two customary routes of ceramics processing applied to the synthesis of SnO2-based varistors is reported in this paper. Devices of equivalent composition were prepared through the Pechini method and through directly mixing the oxides without the addition of anti-agglomerants or binders. The microstructures of the sintered samples were characterised with X-ray diffraction and scanning and transmission electron microscopies. The electrical behaviour of the devices was studied on the basis of the current density versus electric field (J-E) characteristics and impedance spectroscopy measurements. The Pechini method ensures the homogeneity in the distribution of the additives in the tin oxide matrix but the formation of secondary phases seems to be independent of the synthesis route. Devices with similar non-linear coefficients of 18 and 21 were obtained through the mixed oxides route and the Pechini method, respectively. (C) 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically >30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, multiple sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with experimental examples, investigations on a massive quarter scale model of a steel bridge section and a space truss structure, in order to verify the performance of this proposed methodology.
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Objective: To observe the behavior of the plotted vectors on the RXc (R - resistance - and Xc - reactance corrected for body height/length) graph through bioelectrical impedance analysis (BIVA) and phase angle (PA) values in stable premature infants, considering the hypothesis that preterm infants present vector behavior on BIVA suggestive of less total body water and soft tissues, compared to reference data for term infants. Methods: Cross-sectional study, including preterm neonates of both genders, in-patients admitted to an intermediate care unit at a tertiary care hospital. Data on delivery, diet and bioelectrical impedance (800 mA, 50 kHz) were collected. The graphs and vector analysis were performed with the BIVA software. Results: A total of 108 preterm infants were studied, separated according to age (< 7 days and >= 7 days). Most of the premature babies were without the normal range (above the 95% tolerance intervals) existing in literature for term newborn infants and there was a tendency to dispersion of the points in the upper right quadrant, RXc plan. The PA was 4.92 degrees (+/- 2.18) for newborns < 7 days and 4.34 degrees (+/- 2.37) for newborns >= 7 days. Conclusion: Premature infants behave similarly in terms of BIVA and most of them have less absolute body water, presenting less fat free mass and fat mass in absolute values, compared to term newborn infants.