886 resultados para Electrical and electronic equipment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have constructed a forward modelling code in Matlab, capable of handling several commonly used electrical and electromagnetic methods in a 1D environment. We review the implemented electromagnetic field equations for grounded wires, frequency and transient soundings and present new solutions in the case of a non-magnetic first layer. The CR1Dmod code evaluates the Hankel transforms occurring in the field equations using either the Fast Hankel Transform based on digital filter theory, or a numerical integration scheme applied between the zeros of the Bessel function. A graphical user interface allows easy construction of 1D models and control of the parameters. Modelling results are in agreement with other authors, but the time of computation is less efficient than other available codes. Nevertheless, the CR1Dmod routine handles complex resistivities and offers solutions based on the full EM-equations as well as the quasi-static approximation. Thus, modelling of effects based on changes in the magnetic permeability and the permittivity is also possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'usage de cigarettes électroniques (vapotage) augmente chez les jeunes et les professionnels de la santé se sentent démunis. Ce court article donne quelques informations pratiques. L'usage (vapotage) de cigarettes électroniques (e-cigarettes) est un phénomène relativement récent qui est en train de prendre une ampleur inattendue, surtout chez les jeunes. Bien que les taux de prévalence soient extrêmement variables d'un pays à l'autre, ils sont en net augmentation: tant parmi ceux qui les ont seulement essayées que chez ceux qui les utilisent habituellement, les taux de prévalence ont doublé ou presque triplé en à peine une année. En outre, une proportion notable d'utilisateurs d'e-cigarettes (de 8 à 33% selon les études)n'avaient jamais fumé de cigarettes conventionnelles. Ce phénomène pourrait faire des e-cigarettes la porte d'entrée au tabagisme parmi les jeunes. Adolescents and electronic cigarettes: The use of electronic cigarettes (vaping) is increasing among young people and health professionals feel ill-prepared. This short article provides some practical information The use of electronic cigarettes (vaping) is increasing among young people and health professionals feel ill-prepared. This short article provides some practical information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three compounds have been synthesized with formulae [3-MeRad][Ni(dmit)2] (1), [4-MeRad][Ni(dmit)2] (2) and [4-PrRad][Ni(dmit)2] (3) where [Ni(dmit)2]- is an anionic pi-radical (dmit = 1,3-dithiol-2-thione-4,5-dithiolate) and [3-MeRad]+ is 3-N-methylpyridinium alpha-nitronyl nitroxide, [4-MeRad]+ is 4-N-methylpyridinium alpha-nitronyl nitroxide and [4-PrRad]+ is 4-N-propylpyridinium alpha-nitronyl nitroxide. The temperature-dependent magnetic susceptibility of 1 revealed that an antiferromagnetic interaction operates between the 3-MeRad+ radical cations with exchange coupling constants of J1 = - 1.72 cm-1 and antiferromagnetism assigned to the spin ladder chains of the Ni(dmit)2 radical anions. Compound 1 exhibits semiconducting behavior and 3 presents capacitor behavior in the temperature range studied (4 - 300 K).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural and electronic properties of 1-(5-Hydroxymethyl - 4 -[ 5 - (5-oxo-5-piperidin- 1 -yl-penta- 1,3 -dienyl)-benzo [1,3] dioxol- 2 -yl]-tetrahydro -furan-2 -yl)-5-methy l-1Hpyrimidine-2,4dione (AHE) molecule have been investigated theoretically by performing density functional theory (DFT), and semi empirical molecular orbital calculations. The geometry of the molecule is optimized at the level of Austin Model 1 (AM1), and the electronic properties and relative energies of the molecules have been calculated by density functional theory in the ground state. The resultant dipole moment of the AHE molecule is about 2.6 and 2.3 Debyes by AM1 and DFT methods respectively, This property of AHE makes it an active molecule with its environment, that is AHE molecule may interacts with its environment strongly in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative analysis is made on the correlation ship of thermodynamic property, i.e., standard enthalpy of formation (ΔH fº) with Kier's molecular connectivity index(¹Xv),vander waal's volume (Vw) electrotopological state index (E) and refractotopological state index (R) in gaseous state of alkanes. The regression analysis reveals a significant linear correlation of standard enthalpy of formation (ΔH fº) with ¹Xv, Vw, E and R. The equations obtained by regression analysis may be used to estimate standard enthalpy of formation (ΔH fº) of alkanes in gaseous state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest in mixed-valent perovskite manganese oxides of La\-xAxMnO^ (v4-divalent alkaline earth Ca, Sr or Ba), whose unusual properties were discovered nearly a half century ago, has recently been revived. The discovery of the colossal magnetoresistance and pressure effects introduced new questions concerning the complex interplay between lattice structure, magnetism and transport in doped perovskite manganites. In this study, we report our experimental investigations of pressure and magnetic field dependencies of La-i/sCai/sMnOs (LCMO) epitaxial films with various thickness on SrTiO$ substrate. An analysis of film thickness dependency of the resistivity of LCMO epitaxial films under pressure and magnetic field has been performed by taking into account substrate contributions. This verifies the correlation of lattice distortion with magnetic and transport properties. Strong dependencies of Mn — O — Mn bond bending and Mn — O bond stretching with pressure as well as Mn spin alignment with magnetic field, and the lattice distortion induced by the substrate are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is an attempt to understand the characteristics of high energy ball milling on the structural, electrical and magnetic properties of some normal spinets in the ultra fine regime, Magnetism and magnetic materials have been a fascinating subject for the mankind ever since the discovery of lodestone. Since then, man has been applying this principle of magnetism to build devices for various applications. Magnetism can be classified broadly into five categories. They are diamagnetic, paramagnetic, ferromagnetic antiferromagnetic and ferrimagnetic. Of these, ferro and ferri magnetic materials assume great commercial importance due to their unique properties like appropriate magnetic characteristics, high resistivity and low eddy current losses. The emergence of nanoscience and nanotechnology during the last decade had its impact in the field of magnetism and magnetic materials too. Now, it is common knowledge that materials synthesized in the nanoregime exhibit novel and superlative properties with respect to their coarser sized counterparts in the micron regime. These studies reveal that dielectric properties can be varied appreciably by high-energy ball milling in nanosized zinc ferrites produced by coprecipitation method. A semi conducting behaviour was observed in these materials with the Oxygen vacancies acting as the main charge carrier for conduction, which was produced at the time of coprecipitation and milling. Thus through this study, it was possible to successfully investigate the finite size effects on the structural, electrical and magnetic properties of normal spinels in the ultra fine regime

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis mainly deals with the preparation and studies on magnetic composites based on spinel ferrites prepared both chemically and mechanically. Rubber ferrite composites (RFC) are chosen because of their mouldability and flexibility and the ease with which the dielectric and magnetic properties can be manipulated to make them as useful devices. Natural rubber is chosen as the Matrix because of its local availability and possible value addition. Moreover, NR represents a typical unsaturated nonpolar matrix. The work can be thought of as two parts. Part l concentrates on the preparation and characterization of nanocomposites based on y-Fe203. Part 2 deals with the preparation and characterization of RFCs containing Nickel zinc ferrit In the present study magnetic nanocomposites have been prepared by ionexchange method and the preparation conditions have been optimized. The insitu incorporation of the magnetic component is carried out chemically. This method is selected as it is the easiest and simplest method for preparation of nanocomposite. Nanocomposite samples thus prepared were studied using VSM, Mossbauer spectroscopy, Iron content estimation, and ESR spectroscopy. For the preparation of RFCs, the filler material namely nickel zinc ferrite having the general formula Ni)_xZnxFez04, where x varies from 0 to 1 in steps of 0.2 have been prepared by the conventional ceramic techniques. The system of Nil_xZn"Fe204 is chosen because of their excellent high frequency characteristics. After characterization they are incorporated into the polymer matrix of natural rubber by mechanical method. The incorporation is done according to a specific recipe and for various Loadings of magnetic fillers and also for all compositions. The cure characteristics, magnetic properties and dielectric properties of these composites are evaluated. The ac electrical conductivity of both ceramic nickel zinc ferrites and rubber ferrite composites are also calculated using a simple relation. The results are correlated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main challenges in the deposition of cathode materials in thin film form are the reproduction of stoichiometry close to the bulk material and attaining higher rates of deposition and excellent crystallinity at comparatively lower annealing temperatures. There are several methods available to develop stoichiometric thin film cathode materials including pulsed laser deposition; plasma enhanced chemical vapor deposition, electron beam evaporation, electrostatic spray deposition and RF magnetron sputtering. Among them the most versatile method is the sputtering technique, owing to its suitability for micro-fabricating the thin film batteries directly on chips in any shape or size, and on flexible substrates, with good capacity and cycle life. The main drawback of the conventional sputtering technique using RF frequency of 13.56MHz is its lower rate of deposition, compared to other deposition techniques A typical cathode layer for a thin film battery requires a thickness around one micron. To deposit such thick layers using convention RF sputtering, longer time of deposition is required, since the deposition rate is very low, which is typically 10-20 Å/min. This makes the conventional RF sputtering technique a less viable option for mass production in an economical way. There exists a host of theoretical and experimental evidences and results that higher excitation frequency can be efficiently used to deposit good quality films at higher deposition rates with glow discharge plasma. The effect of frequencies higher than the conventional one (13.56MHz) on the RF magnetron sputtering process has not been subjected to detailed investigations. Attempts have been made in the present work, to sputter deposit spinel oxide cathode films, using high frequency RF excitation source. Most importantly, the major challenge faced by the thin film battery based on the LiMn2O4 cathode material is the poor capacity retention during charge discharge cycling. The major causes for the capacity fading reported in LiMn2O4cathode materials are due to, Jahn-Teller distortion, Mn2+ dissolution into the electrolyte and oxygen loss in cathode material during cycling. The work discussed in this thesis is an attempt on overcoming the above said challenges and developing a high capacity thin film cathode material.