943 resultados para Electric welding.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

100 year old gasoline engine technology vehicles have now become one of the major contributors of greenhouse gases. Plug-in Electric Vehicles (PEVs) have been proposed to achieve environmental friendly transportation. Even though the PEV usage is currently increasing, a technology breakthrough would be required to overcome battery related drawbacks. Although battery technology is evolving, drawbacks inherited with batteries such as; cost, size, weight, slower charging characteristic and low energy density would still be dominating constrains for development of EVs. Furthermore, PEVs have not been accepted as preferred choice by many consumers due to charging related issues. To address battery related limitations, the concept of dynamic Wireless Power Transfer (WPT) enabled EVs have been proposed in which EV is being charged while it is in motion. WPT enabled infrastructure has to be employed to achieve dynamic EV charging concept. The weight of the battery pack can be reduced as the required energy storage is lower if the vehicle can be powered wirelessly while driving. Stationary WPT charging where EV is charged wirelessly when it is stopped, is simpler than dynamic WPT in terms of design complexity. However, stationary WPT does not increase vehicle range compared to wired-PEVs. State-of-art WPT technology for future transportation is discussed in this chapter. Analysis of the WPT system and its performance indices are introduced. Modelling the WPT system using different methods such as equivalent circuit theory, two port network theory and coupled mode theory is described illustrating their own merits in Sect. 2.3. Both stationary and dynamic WPT for EV applications are illustrated in Sect. 2.4. Design challenges and optimization directions are analysed in Sect. 2.5. Adaptive tuning techniques such as adaptive impedance matching and frequency tuning are also discussed. A case study for optimizing resonator design is presented in Sect. 2.6. Achievements by the research community is introduced highlighting directions for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct writing melt electrospinning is an additive manufacturing technique capable of the layer-by-layer fabrication of highly ordered 3d tissue engineering scaffolds from micron-diameter fibres. The utility of these scaffolds, however, is limited by the maximum achievable height of controlled fibre deposition, beyond which the structure becomes increasingly disordered. A source of this disorder is charge build-up on the deposited polymer producing unwanted coulombic forces. In this study we introduce a novel melt electrospinning platform with dual voltage power supplies to reduce undesirable charge effects and improve fibre deposition control. We produced and characterised several 90° cross-hatched fibre scaffolds using a range of needle/collector plate voltages. Fibre thickness was found to be sensitive only to overall potential and invariant to specific tip/collector voltage. We also produced ordered scaffolds up to 200 layers thick (fibre spacing 1 mm, diameter 40 μm) and characterised structure in terms of three distinct zones; ordered, semi-ordered and disordered. Our in vitro analysis indicates successful cell attachment and distribution throughout the scaffolds, with little evidence of cell death after seven days. This study demonstrates the importance of electrostatic control for reducing destabilising polymer charge effects and enabling the fabrication of morphologically suitable scaffolds for tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modularized battery system with Double Star Chopper Cell (DSCC) based modular multilevel converter is proposed for a battery operated electric vehicle (EV). A design concept for the modularized battery micro-packs for DSCC is described. Multidimensional pulse width modulation (MD-PWM) with integrated inter-module SoC balancing and fault tolerant control is proposed and explained. The DSCC can be operated either as an inverter to drive the EV motor or as a synchronous rectifier connected to external three phase power supply equipment for charging the battery micro-packs. The methods of operation as inverter and synchronous rectifier with integrated inter-module SoC balancing and fault tolerant control are discussed. The proposed system operation as inverter and synchronous rectifier are verified through simulations and the results are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing integration of Renewable Energy Resources (RER) and the role of Electric Energy Storage (EES) in distribution systems has created interest in using energy management strategies. EES has become a suitable resource to manage energy consumption and generation in smart grid. Optimize scheduling of EES can also maximize retailer’s profit by introducing energy time-shift opportunities. This paper proposes a new strategy for scheduling EES in order to reduce the impact of electricity market price and load uncertainty on retailers’ profit. The proposed strategy optimizes the cost of purchasing energy with the objective of minimizing surplus energy cost in hedging contract. A case study is provided to demonstrate the impact of the proposed strategy on retailers’ financial benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of Electric Energy Storage (EES) integrated with Renewable Energy Resources (RER) has increased use of optimum scheduling strategy in distribution systems. Optimum scheduling of EES can reduce cost of purchased energy by retailers while improve the reliability of customers in distribution system. This paper proposes an optimum scheduling strategy for EES and the evaluation of its impact on reliability of distribution system. Case study shows the impact of the proposed strategy on reliability indices of a distribution system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

South Africa has an electrical transmission grid of over 25 000 km of overhead power lines with voltages of 132 kV to 765 kV. The grid has been largely designed and built by the power utility, Eskom. This book embodies the planning philosophies, design principles and construction practices of Eskom. It is the culmination of decades of thought, study, research and the practical experience of many overhead power line engineers and researchers. The book covers the main aspects of overhead power line design and construction, from electrical first principles, system planning, insulation co-ordination (including live line working), mechanical design through to environmental impact management and power line communications. The content emphasises the need for close interaction between all technical disciplines involved and the importance of optimising designs for economy and performance. Additional challenges in South Africa are the relatively high altitude of the interior plateau (1 000 m to 1 700 m above sea level), severe lightning in some areas and long transmission distances. The book explains how these factors are accommodated in modern designs. Other advanced work covered includes the use and understanding of polymeric insulators, the judicious reduction of phase-to-phase spacings and the adoption of guyed structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many years, Human-Computer Interaction and interaction design researchers have been exploring the potential for interactive technologies to encourage sustainable living practices. This paper examines existing literature concerning domestic energy feedback, interlacing past examples of domestic interventions into the discussion. It synthesises recent design research conducted around domestic energy-use and provides a discussion into household circumstances, everyday activities, and the use and role of design. The themes presented are threefold. First, the individual is contrasted to the household collective and in turn calls for the scope and scale of design interventions to be geared towards connection between household members. The second theme questions the everyday, and proposes new avenues of thought when designing for the mundanity of everyday life. Finally, I propose that a design approach which counteracts an affirmative design approach, such as critical design, is an appropriate fit when critiquing and evaluating the mundane, everyday aspects of domestic life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fire performance of cold-formed steel members is an important criterion to be verified for their successful use in structural applications. However, lack of clear design guidance on their fire performance has inhibited their usage in buildings. Their elevated temperature mechanical properties, i.e., yield strengths, elastic moduli and stress–strain relationships, are imperative for the fire design. In the past many researchers have proposed elevated temperature mechanical property reduction factors for cold-formed steels, however, large variations exist among them. The LiteSteel Beam (LSB), a hollow flange channel section, is manufactured by a combined cold-forming and electric resistance welding process. Its web, inner and outer flange elements have different yield strengths due to varying levels of cold-working caused by their manufacturing process. Elevated temperature mechanical properties of LSBs are not the same even within their cross-sections. Therefore an experimental study was undertaken to determine the elevated temperature mechanical properties of steel plate elements in LSBs. Elevated temperature tensile tests were performed on web, inner and outer flange specimens taken from LSBs, and their results are presented in this paper including their comparisons with previous studies. Based on the test results and the proposed values from previous studies and fire design standards, suitable predictive equations are proposed for the determination of elevated temperature mechanical properties of LSB web and flange elements. Suitable stress–strain models are also proposed for the plate elements of this cold-formed and welded hollow flange channel section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of friction stir welding (FSW) puts effective use frictional heat for the purpose of joining metallic materials. In this research article, we present and discuss an experimental method to determine the coefficient of friction during FSW. The experiments were conducted to study the interaction between the FSW tool (a die steel) and the base metal (a high strength aluminum alloy) at various contact pressures (13MPa, 26MPa, and 39MPa) and rotation speeds (200rpm, 600rpm, 1000rpm, and 1400rpm). The experimental results, the microstructure, and the process temperature reveal the experimental setup to be capable of simulating the conditions during FSW. The coefficient of friction was found to vary from 0.15 to 1.4, and the temperature increased to as high as 450C. The coefficient of friction was found to increase with temperature. There exists a critical temperature at which point a steep increase in the coefficient of friction was observed. The critical temperature decreases from 250C at a contact pressure of 26MPa to 200C at contact pressure of 34MPa. Below the critical temperature at a specific contact pressure the maximum coefficient of friction is 0.6, and above the critical temperature it reaches a value as high as 1.4. The steep increase in the coefficient of friction is found to be due to the seizure phenomenon and the contact condition during FSW between the tool and the workpiece (base metal) is found to be sticking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of the relation between polarisation and electric field for ferroelectric trissarcosine calcium chloride (TSCC) was made in the pressure range up to 6 kbar. The pressure dependence of the spontaneous polarisation and the coercive field were obtained, and the existence of a new pressure-induced phase and the paraelectric- ferroelectric-new phase triple point were found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a well know that electrons and positive ions are responsible in the case of electric spark. Investigation have been undertaken in the high voltage laboratory to study the effect of injecting ions (both possitive and negative)into the spark gap.Also the effect of paper screens in blocking the ions being invetsigated.