939 resultados para Electric Quantities, Properties and Effects.
Resumo:
Blends of soybean oil (50) and fully hydrogenated soybean oil (FHSBO), with 10%, 20%, 30%, 40% and 50% FHSBO (w/w) content were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100 degrees C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in monounsaturated and diunsaturated triacylglycerols, resulting in lowering of respective melting points. The interesterified blends displayed reduced SFC at all temperatures and more linear melting profiles as compared with the original blends. Yield values showed increased plasticity in the blends after the reaction. Isosolid diagrams before and after the reaction showed no eutectic interactions. The 90:10, 80:20, 70:30 and 60:40 interesterified SO:FHSBO blends displayed characteristics suited to application, respectively, as liquid shortening, table margarine, baking/confectionery fat and all-purpose shortenings/biscuit-filing base. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Microencapsulation of Lippia sidoides essential oil was carried out by spray drying. Blends of maltodextrin and gum arabic were used as carrier. Spray dried microparticles were characterized using conventional (thermogravimetry, evolved gas analysis) and combined (thermogravimetry-mass spectrometry analysis) thermal analysis techniques in order to evaluate the abilities of carriers with different compositions in retaining and in releasing the core vs. dynamic heating. Thermal analysis was useful to evaluate the physico-chemical interactions between the core and carriers and to determine the protective effect of the carriers on the evaporation of essential oil.
Resumo:
Formation of a normal (not temporary) W/O/W multiple emulsion via the one-step method as a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes has been recently reported. Critical features of this process include the emulsification temperature (corresponding to the ultralow surface tension point), the use of a specific nonionic surfactant blend and the surfactant blend/oil phase ratio, and the addition of the surfactant blend to the oil phase. The purpose of this study was to investigate physicochemical properties in an effort to gain a mechanistic understanding of the formation of these emulsions. Bulk, surface, and interfacial theological properties of adsorbed nonionic surfactant (CremophorRH40 and Span80) films were investigated under conditions known to affect W/O/W emulsion formation. Bulk viscosity results demonstrated that CremophorRH40 has a higher mobility in oil compared than in water, explaining the significance of the solvent phase. In addition, the bulk viscosity profile of aqueous solutions containing CremophorRH40 indicated a phase transition at around 78 +/- 2 degrees C, which is in agreement with cubic phase formation in the Winsor III region. The similarity in the interfacial elasticity values of CremophorRH40 and Span80 indicated that canola oil has a major effect on surface activity, showing the significance of vegetable oil. The highest interfacial shear elasticity and viscosity were observed when both surfactants were added to the oil phase, indicating the importance of the microstructural arrangement. CremophorRH40/Span80 complexes tended to desorb from the solution/solution interface with increasing temperature, indicating surfactant phase formation as is theoretically predicted in the Winsor III region. Together these interfacial and bulk rheology data demonstrate that one-step W/O/W emulsions form as a result of the simultaneous occurrence of phase-transition processes in the Winsor III region and explain the critical formulation and processing parameters necessary to achieve the formation of these normal W/O/W emulsions.
Resumo:
The Ile-->Ser84 substitution in the thyroid hormone transport protein transthyretin is one of over 50 variations found to be associated with familial amyloid polyneuropathy, a hereditary type of lethal amyloidosis. Using a peptide analogue of the loop containing residue 84 in transthyretin, we have examined the putative local structural effects of this substitution using H-1-NMR spectroscopy. The peptide, containing residues 71-93 of transthyretin with its termini linked via a disulfide bond, was found to possess the same helix-turn motif as in the corresponding region of the crystallographically derived structure of transthyretin in 20% trifluoroethanol (TFE) solution. It therefore, represents a useful model with which to examine the effects of amyloidogenic substitutions. In a peptide analogue containing the Ile84-->Ser substitution it was found that the substitution does not greatly disrupt the overall three-dimensional structure, but leads to minor local differences at the turn in which residue 84 is involved. Coupling constant and NOE measurements indicate that the helix-turn motif is still present, but differences in chemical shifts and amide-exchange rates reflect a small distortion. This is in keeping with observations that several other mutant forms of transthyretin display similar subunit interactions and those that have been structurally analysed possess a near native structure. We propose that the Ser84 mutation induces only subtle perturbations to the transthyretin structure which predisposes the protein to amyloid formation.
Resumo:
Effect of additives on the starch gelatinization was governed by the processing conditions. The order-disorder transition of starch in water can occur in more than one way and the effect of polar additives on gelatinization can also be in more than one way. The additives appear to be plasticising thermoplastic starches, resulting in improving rheological properties. The thermoplastic starches with the additives are all biodegradable although the rates of biodegradability are slightly different.
Resumo:
Changes in the physical properties (such as particle density, bulk density of the bed, shrinkage and bed porosity) of fresh green bean particulates were investigated during drying. Three length:diameter ratios (1:1, 2:1 and 3:1) were considered, using drying conditions of 50 +/- 2 degrees C and 13 +/- 2% relative humidity in a heat pump dehumidifier system. The fluidization behaviour was also evaluated at 10 levels of moisture content. The fluidization experiments demonstrated that the minimum fluidization velocity decreases as the drying proceeds due to the reduced moisture content and changes in the physical properties of the bean particulates. Empirical relationships of the following nature were developed for the change in shrinkage [VR = 1 - Be-kMR], particle density [rho(p) = A + BMR + C (exp)(-D MR)], bulk density [rho(b) = a(1) + b(1)MR + c(1)MR(2)] and bed porosity [epsilon = a(2) + b(2)MR + c(2)MR(2)] with the moisture content during fluidized bed drying.
Resumo:
Using whole cell recordings from acute slices of the rat amygdala, we have examined the physiological properties of and synaptic connectivity to neurons in the lateral sector of the central amygdala (CeA). Based on their response to depolarizing current injections, CeA neurons could be divided into three types. Adapting neurons fired action potentials at the start of the current injections at high frequency and then showed complete spike-frequency adaptation with only six to seven action potentials evoked with suprathreshold current injections. Late-firing neurons fired action potentials with a prolonged delay at threshold but then discharged continuously with larger current injections. Repetitive firers discharged at the start of the current injection at threshold and then discharged continuously with larger current injections. All three cells showed prolonged afterhyperpolarizations (AHPs) that followed trains of action potentials. The AHP was longer lasting with a larger slow component in adapting neurons. The AHP in all cell types contained a fast component that was inhibited by the SK channel blocker UCL1848. The slow component, not blocked by UCL1848, was blocked by isoprenaline and was significantly larger in adapting neurons. Blockade of SK channels increased the discharge frequency in late firers and regular-spiking neurons but had no effect on adapting neurons. Blockade of the slow AHP with isoprenaline had no effect on any cell type. All cells received a mixed glutamatergic and GABAergic input from a medial pathway. Electrical stimulation of the lateral (LA) and basolateral (BLA)nuclei evoked a large monosynaptic glutamatergic response followed by a disynaptic inhibitory postsynaptic potential. Activation of neurons in the LA and BLA by puffer application of glutamate evoked a small monosynaptic response in 13 of 55 CeA neurons. Local application of glutamate to the CeL evoked a GABAergic response in all cells. These results show that at least three types of neurons are present in the CeA that can be distinguished on their firing properties. The firing frequency of two of these cell types is determined by activation of SK channels. Cells receive a small input from the LA and BLA but may receive inputs that course through these nuclei en route to the CeA.
Resumo:
This work presents a new oxovanadium(IV)-cucurbit[6]uril complex, which combines the catalytic properties of the metal ion with the size-excluding properties of the macrocycle cavity. In this coordination compound, the VO(2-) ions are coordinated to the oxygen atoms located at the rim of the macrocycle in slightly distorted square-pyramidal configurations, which are in fact C(2v) symmetries. This combination results in a size-selective heterogeneous catalyst, which is able to oxidize linear alkanes like n-pentane at room temperature, but not styrene, cyclohexane or z-cyclooctene, which are too big to enter the cucurbit[6]uril cavity. The results presented here contribute to understanding the mechanism of alkane catalytic oxidation by oxovanadium(IV) complexes. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Layer-by-layer (LbL) nanocomposite films from TiO(2) nanoparticles and tungsten-based oxides (WO(x)H(y)), as well as dip-coating films of TiO(2) nano particles, were prepared and investigated by electrochemical techniques under visible light beams, aiming to evaluate the lithium ion storage and chromogenic properties. Atomic force microscopy (AFM) images were obtained for morphological characterization of the Surface of the materials, which have similar roughness. Cyclic voltammetry and chronoamperometry measurements indicated high storage capacity of lithium ions in the LbL nanocomposite compared with the dip-coating film, which was attributed to the faster lithium ion diffusion rate within the self-assembled matrix. On the basis of the data obtained from galvanostatic intermittent titration technique (GITT), the values of lithium ion diffusion coefficient (D(Li)) for TiO(2)/WO(x)H(y) were larger compared with those for TiO(2). The rate of the coloration front in the matrices was investigated using a spectroelectrochemical method based oil GITT, allowing the determination of the ""optical"" diffusion coefficient (D(op)) as a function of the amount of lithium ions previously inserted into the matrices. The Values of D(Li) and D(op) suggested the existence of phases with distinct contribution to lithium ion diffusion rates and electrochromic efficiency. Moreover, these results aided a better understanding of the temporal change of current density and absorbance during the ionic electro-insertion, which is important for the possible application of these materials in lithium ion batteries and electrohromic devices.
Resumo:
Purpose: To test the hypothesis that ruptured abdominal aortic aneurysms (AAA) are globally weaker than unruptured ones. Methods: Four ruptured and seven unruptured AAA specimens were harvested whole from fresh cadavers during autopsies performed over an 18-month period. Multiple regionally distributed longitudinally oriented rectangular strips were cut from each AAA specimen for a total of 77 specimen strips. Strips were subjected to uniaxial extension until failure. Sections from approximately the strongest and weakest specimen strips were studied histologically and histochemically. From the load-extension data, failure tension, failure stress and failure strain were calculated. Rupture site characteristics such as location, arc length of rupture and orientation of rupture were also documented. Results: The failure tension, a measure of the tissue mechanical caliber was remarkably similar between ruptured and unruptured AAA (group mean +/- standard deviation of within-subject means: 11.2 +/- 2.3 versus 11.6 +/- 3.6 N/cin; p=0.866 by mixed model ANOVA). In post-hoc analysis, there was little difference between the groups in other measures of tissue mechanical caliber as well such as failure stress (95 +/- 28 versus 98 +/- 23 N/cm(2); p=0.870), failure strain (0.39 +/- 0.09 versus 0.36 +/- 0.09; p=0.705), wall thickness (1.7 +/- 0.4 versus 1.5 +/- 0.4 mm; p=0.470), and % coverage of collagen within tissue cross section (49.6 +/- 12.9% versus 60.8 +/- 9.6%; p=0.133). In the four ruptured AAA, primary rupture sites were on the lateral quadrants (two on left; one on left-posterior; one on right). Remarkably, all rupture lines had a longitudinal orientation and ranged from 1 to 6 cm in length. Conclusion: The findings are not consistent with the hypothesis that ruptured aortic aneurysms are globally weaker than unruptured ones. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study provides an investigation of the availability of octyl salicylate (OS), a common sunscreen agent, from liquid paraffin and the effect of OS on skin permeability. A model membrane system to isolate the vehicle effect from membrane permeability has been developed. Partitioning of OS between liquid paraffin and aqueous receptor phases was conducted. Partition coefficients increased with increase in OS concentration. A range of OS concentrations in liquid paraffin was diffused across human epidermis and synthetic membranes into 4% bovine serum albumin in phosphate-buffered saline and 50% ethanol. Absorption profiles of OS obtained from silicone and low-density polyethylene (LDPE) membranes were similar to each other but higher than for the high-density polyethylene [HDPE (3 times)] membrane and human epidermis (15 times). The steady state fluxes and apparent permeability coefficients (K-p') obtained from the diffusion studies showed the same trends with all membranes, except for the HDPE membrane which showed greater increase in flux and K-p' at concentrations above 30%. IR spectra showed that several bands of OS were shifted with concentrations, and the molecular models further suggested that the main contribution to the self-association is from non-1,4 van der Waals interactions.
Resumo:
Neuropeptide Y (NPY) is an important neuromodulator found in central and peripheral neurons. NPY was investigated in the peripheral auditory pathway of conventional housed rats and after nontraumatic sound stimulation in order to localize the molecule and also to describe its response to sound stimulus. Rats from the stimulation experiment were housed in monitored sound-proofed rooms. Stimulated animals received sound stimuli (pure tone bursts of 8 kHz, 50 ms duration presented at a rate of 2 per second) at an intensity of 80 dB sound pressure level for 1 hr per day during 7 days. After euthanizing, rat cochleae were processed for one-color immunohistochemistry. The NPY immunoreactivity was detected in inner hair cells (IHC) and also in pillar and Deiters` cells of organ of Corti, and in the spiral ganglion putative type I (1,009 m3) and type II (225 m3) neurons. Outer hair cells (OHC) showed light immunoreaction product. Quantitative microdensitometry showed strong and moderate immunoreactions in IHC and spiral ganglion neurons, respectively, without differences among cochlear turns. One week of acoustic stimulation was not able to induce changes in the NPY immunoreactivity intensity in the IHC of cochlea. However, stimulated rats showed an overall increase in the number of putative type I and type II NPY immunoreactive spiral ganglion neurons with strong, moderate, and weak immunolabeling. Localization and responses of NPY to acoustic stimulus suggest an involvement of the neuropeptide in the neuromodulation of afferent transmission in the rat peripheral auditory pathway.
Resumo:
Thanks to the technological development in peritoneal dialysis (PD) during the last three decades, the most important problem nowadays for the nephrologists is the maintenance of the long-term function of the peritoneal membrane. Although PD may exert an early survival benefit as compared with hemodialysis (HD), long-term PD is often associated with histopathological alterations in the peritoneal membrane that are linked to peritoneal ultrafiltration deficit and increased mortality risk. These alterations are closely related to the presence of a chronic activated (local and systemic) inflammatory response. PD itself may have other factors associated that could further modulate the inflammatory response, such as the bioincompatibility of dialysis solutions, fluid overload and changes in the body composition. Understanding the pathophysiology of inflammation in PD is essential for the adoption of adequate strategies to improve both membrane and patient survival. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Growth hormone (GH) influences bone mass maintenance. However, the consequences of lifetime isolated GH deficiency (IGHD) on bone are not well established. We assessed the bone status and the effect of 6 months of GH replacement in GH-naive adults with IGHD due to a homozygous mutation of the GH-releasing hormone (GHRH)-receptor gene (GHRHR). We studied 20 individuals (10 men) with IGHD at baseline, after 6 months of depot GH treatment, and 6 and 12 months after discontinuation of GH. Quantitative ultrasound (QUS) of the heel was performed and serum osteocalcin (OC) and C-terminal cross-linking telopeptide of type I collagen (ICTP) were measured. QUS was also performed at baseline and 12 months later in a group of 20 normal control individuals (CO), who did not receive GH treatment. At baseline, the IGHD group had a lower T-score on QUS than CO (-1.15 +/- 0.9 vs. -0.07 +/- 0.9, P < 0.001). GH treatment improved this parameter, with improvement persisting for 12 months post-treatment (T-score for IGHD = -0.59 +/- 0.9, P < 0.05). GH also caused an increase in serum OC (baseline vs. pGH, P < 0.001) and ICTP (baseline vs. pGH, P < 0.01). The increase in OC was more marked during treatment and its reduction was slower after GH discontinuation than in ICTP. These data suggest that lifetime severe IGHD is associated with significant reduction in QUS parameters, which are partially reversed by short-term depot GH treatment. The treatment induces a biochemical pattern of bone anabolism that persists for at least 6 months after treatment discontinuation.