608 resultados para Eldgja eruption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

June 2011 saw the first historic eruption of Nabro volcano, one of an ongoing sequence of eruptions in the Afar-Red Sea region since 2005. It halted air travel in northern Africa, contaminated food and water sources, and displaced thousands from their homes. Due to its remote location, little was known about this event in terms of the quantity of erupted products and the timing and mechanisms of their emplacement. Geographic isolation, previous quiescence and regional civil unrest meant that this volcano was effectively unmonitored at the time of eruption, and opportunities for field study are limited. Using free, publicly available satellite data, I examined rates of lava effusion and SO2 emission in order to quantify the amount of erupted products and understand the temporal evolution of the eruption, as well as explore what information can be gleaned about eruption mechanisms using remote sensing data. These data revealed a bimodal eruption, beginning with explosive activity marked by high SO2 emission totalling 1824 - 2299 KT, and extensive ash fall of 270 - 440 km2. This gave way to a period of rapid effusion, producing a ~17 km long lava flow, and a volume of ~22.1 x 106 m3. Mass balance between the SO2 and lava flows reveals no sulfur 'excess', suggesting that nearly all of the degassed magma was extruded. The 2011 eruption of Nabro lasted nearly 6 weeks, and may be considered the second largest historic eruption in Africa. Work such as this highlights the importance of satellite remote sensing for studying and monitoring volcanoes, particularly those in remote regions that may be otherwise inaccessible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most recent submarine eruption observed offshore the Azores archipelago occurred between 1998-2001 along the submarine Serreta ridge (SSR), ~4-5 nautical miles WNW of Terceira Island. This submarine eruption delivered abundant basaltic lava balloons floating at the sea surface and significantly changed the bathymetry around the eruption area. Our work combines bathymetry, volcanic facies cartography, petrography, rock magnetism and geochemistry in order to (1) track the possible vent source at seabed, (2) better constrain the Azores magma source(s) sampled through the Serreta submarine volcanic event, and (3) interpret the data within the small-scale mantle source heterogeneity framework that has been demonstrated for the Azores archipelago. Lava balloons sampled at sea surface display a radiogenic signature, which is also correlated with relatively primitive (low) 4He/3He isotopic ratios. Conversely, SSR lavas are characterized by significantly lower radiogenic 87Sr/86Sr, 206Pb/204Pb and 208Pb/204Pb ratios than the lava balloons and the onshore lavas from the Terceira Island. SSR lavas are primitive, but incompatible trace-enriched. Apparent decoupling between the enriched incompatible trace element abundances and depleted radiogenic isotope ratios is best explained by binary mixing of a depleted MORB source and a HIMU­type component into magma batches that evolved by similar shallower processes in their travel to the surface. The collected data suggest that the freshest samples collected in the SSR may correspond to volcanic products of an unnoticed and more recent eruption than the 1998-2001 episode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large igneous provinces (LIPs) are sites of the most frequently recurring, largest volume basaltic and silicic eruptions in Earth history. These large-volume (N1000 km3 dense rock equivalent) and large-magnitude (NM8) eruptions produce areally extensive (104–105 km2) basaltic lava flow fields and silicic ignimbrites that are the main building blocks of LIPs. Available information on the largest eruptive units are primarily from the Columbia River and Deccan provinces for the dimensions of flood basalt eruptions, and the Paraná–Etendeka and Afro-Arabian provinces for the silicic ignimbrite eruptions. In addition, three large-volume (675– 2000 km3) silicic lava flows have also been mapped out in the Proterozoic Gawler Range province (Australia), an interpreted LIP remnant. Magma volumes of N1000 km3 have also been emplaced as high-level basaltic and rhyolitic sills in LIPs. The data sets indicate comparable eruption magnitudes between the basaltic and silicic eruptions, but due to considerable volumes residing as co-ignimbrite ash deposits, the current volume constraints for the silicic ignimbrite eruptions may be considerably underestimated. Magma composition thus appears to be no barrier to the volume of magma emitted during an individual eruption. Despite this general similarity in magnitude, flood basaltic and silicic eruptions are very different in terms of eruption style, duration, intensity, vent configuration, and emplacement style. Flood basaltic eruptions are dominantly effusive and Hawaiian–Strombolian in style, with magma discharge rates of ~106–108 kg s−1 and eruption durations estimated at years to tens of years that emplace dominantly compound pahoehoe lava flow fields. Effusive and fissural eruptions have also emplaced some large-volume silicic lavas, but discharge rates are unknown, and may be up to an order of magnitude greater than those of flood basalt lava eruptions for emplacement to be on realistic time scales (b10 years). Most silicic eruptions, however, are moderately to highly explosive, producing co-current pyroclastic fountains (rarely Plinian) with discharge rates of 109– 1011 kg s−1 that emplace welded to rheomorphic ignimbrites. At present, durations for the large-magnitude silicic eruptions are unconstrained; at discharge rates of 109 kg s−1, equivalent to the peak of the 1991 Mt Pinatubo eruption, the largest silicic eruptions would take many months to evacuate N5000 km3 of magma. The generally simple deposit structure is more suggestive of short-duration (hours to days) and high intensity (~1011 kg s−1) eruptions, perhaps with hiatuses in some cases. These extreme discharge rates would be facilitated by multiple point, fissure and/or ring fracture venting of magma. Eruption frequencies are much elevated for large-magnitude eruptions of both magma types during LIP-forming episodes. However, in basaltdominated provinces (continental and ocean basin flood basalt provinces, oceanic plateaus, volcanic rifted margins), large magnitude (NM8) basaltic eruptions have much shorter recurrence intervals of 103–104 years, whereas similar magnitude silicic eruptions may have recurrence intervals of up to 105 years. The Paraná– Etendeka province was the site of at least nine NM8 silicic eruptions over an ~1 Myr period at ~132 Ma; a similar eruption frequency, although with a fewer number of silicic eruptions is also observed for the Afro- Arabian Province. The huge volumes of basaltic and silicic magma erupted in quick succession during LIP events raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, and paths and rates of ascent from magma reservoirs to the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Airports worldwide represent key forms of critical infrastructure in addition to serving as nodes in the international aviation network. While the continued operation of airports is critical to the functioning of reliable air passenger and freight transportation, these infrastructure systems face a number of sources of disturbance that threaten their operational viability. Recent examples of high magnitude events include the eruption of Iceland’s Eyjafjallajokull volcano eruption (Folattau and Schofield 2010), the failure of multiple systems at the opening of Heathrow’s Terminal 5 (Brady and Davies 2010) and the Glasgow airport 2007 terrorist attack (Crichton 2008). While these newsworthy events do occur, a multitude of lower-level more common disturbances also have the potential to cause significant discontinuity to airport operations. Regional airports face a unique set of challenges, particularly in a nation like Australia where they serve to link otherwise remote and isolated communities to metropolitan hubs (Wheeler 2005), often without the resources and political attention received by larger capital city airports. This paper discusses conceptual relationships between Business Continuity Management (BCM) and High Reliability Theory, and proposes BCM as an appropriate risk-based management process to ensure continued airport operation in the face of uncertainty. In addition, it argues that that correctly implemented BCM can lead to highly reliable organisations. This is framed within the broader context of critical infrastructures and the need for adequate crisis management approaches suited to their unique requirements (Boin and McConnell 2007).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction—Human herpesvirus 8 (HHV8) is necessary for Kaposi sarcoma (KS) to develop, but whether peripheral blood viral load is a marker of KS burden (total number of KS lesions), KS progression (the rate of eruption of new KS lesions), or both is unclear. We investigated these relationships in persons with AIDS. Methods—Newly diagnosed patients with AIDS-related KS attending Mulago Hospital, in Kampala, Uganda, were assessed for KS burden and progression by questionnaire and medical examination. Venous blood samples were taken for HHV8 load measurements by PCR. Associations were examined with odds ratio (OR) and 95% confidence intervals (CI) from logistic regression models and with t-tests. Results—Among 74 patients (59% men), median age was 34.5 years (interquartile range [IQR], 28.5-41). HHV8 DNA was detected in 93% and quantified in 77% patients. Median virus load was 3.8 logs10/106 peripheral blood cells (IQR 3.4-5.0) and was higher in men than women (4.4 vs. 3.8 logs; p=0.04), in patients with faster (>20 lesions per year) than slower rate of KS lesion eruption (4.5 vs. 3.6 logs; p<0.001), and higher, but not significantly, among patients with more (>median [20] KS lesions) than fewer KS lesions (4.4 vs. 4.0 logs; p=0.16). HHV8 load was unrelated to CD4 lymphocyte count (p=0.23). Conclusions—We show significant association of HHV8 load in peripheral blood with rate of eruption of KS lesions, but not with total lesion count. Our results suggest that viral load increases concurrently with development of new KS lesions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last 10 years, the third sector has seen an eruption of texts, websites, discussion forums, conferences, new journals, new research centres and sector-specific degrees. This growing abundance of information allows for hitherto impossible networking, collaboration and general awareness of what is happening in the sector. At the same time, however, like staff in many industries, nonprofit professionals can suffer from an increasingly common 21st century malaise known as ‘information anxiety’. It is worth examining the sector through the lens of Information Studies theory, to question what the information technology needs of nonprofits are and how their information management techniques may differ from those in the public and private sectors. There are implications of this both for those within the industry (in terms of governance, training and public relations) and those external to it (who may form relationships with nonprofits on the basis of access to information).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 12 to 13 July 2003 andesite lava dome collapse at the Soufrière Hills volcano, Montserrat, provides the first opportunity to document comprehensively both the sub-aerial and submarine sequence of events for an eruption. Numerous pyroclastic flows entered the ocean during the collapse, depositing approximately 90% of the total material into the submarine environment. During peak collapse conditions, as the main flow penetrated the air–ocean interface, phreatic explosions were observed and a surge cloud decoupled from the main flow body to travel 2 to 3 km over the ocean surface before settling. The bulk of the flow was submerged and rapidly mixed with sea water forming a water-saturated mass flow. Efficient sorting and physical differentiation occurred within the flow before initial deposition at 500 m water depth. The coarsest components (∼60% of the total volume) were deposited proximally from a dense granular flow, while the finer components (∼40%) were efficiently elutriated into the overlying part of the flow, which evolved into a far-reaching turbidity current.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Soufrière Hills volcano, Montserrat, West Indies, has undergone a series of dome growth and collapse events since the eruption began in 1995. Over 90% of the pyroclastic material produced has been deposited into the ocean. Sampling of these submarine deposits reveals that the pyroclastic flows mix rapidly and violently with the water as they enter the sea. The coarse components (pebbles to boulders) are deposited proximally from dense basal slurries to form steep-sided, near-linear ridges that intercalate to form a submarine fan. The finer ash-grade components are mixed into the overlying water column to form turbidity currents that flow over distances >30 km from the source. The total volume of pyroclastic material off the east coast of Montserrat exceeds 280 × 106 m3, with 65% deposited in proximal lobes and 35% deposited as distal turbidites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent history of the Soufrière Hills Volcano, Montserrat, Lesser Antilles volcanic arc, is reconstructed using data obtained from recently drilled submarine cores.Tephra layers in these cores preserve a record of the volcanic history of Montserrat back to ~250 ka on the basis of micropaleontology and stable isotope stratigraphy. Stratigraphic relationships identified in the cores collected in 2002 and 2005 document the fate of both pyroclastic flows entering the ocean to the east of Montserrat and carbonate-rich turbidites sourced from the carbonate platformssurrounding the islands of the Lesser Antilles. Using oxygen isotope stratigraphy, micropalaeontological analysis and Carbon-14 dating, it can be shown that three significant volcanic events, including the on-going eruption, have occurred over the last 12 ka. Preceding this was a time of volcanic quiescence, with three carbonate-rich turbidite events being documented in many of the cores. Our data suggest that these events occurred during Marine Isotope Stage 2, following the Last Glacial Maximum (LGM) and onset of post-glacial sea level rise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soufrière Hills volcano, Montserrat, has been erupting since 1995. During the current eruption, a large part of the material produced by the volcano has been transported into the sea, modifying the morphology of the submarine flanks of the volcano. We present a unique set of swath bathymetric data collected offshore from Montserrat in 1999, 2002 and 2005. From 1999 to 2002, pyroclastic flows associated with numerous dome collapses entered the sea to produce 100 Mm3 deposit. From 2002 to 2005, the 290 Mm3 submarine deposit is mainly from the 12–13 July 2003 collapse. These data allow us to estimate that, by May 2005, at least 482 Mm3 of material had been deposited on the sea floor since 1995. We compare on-land characteristics and volumes of dome collapse events with the submarine deposits and propose a new analysis of their emplacement on the submarine flanks of the volcano. The deposition mechanism shows a slope dependence, with the maximum thickness of deposit before the break in the slope, probably because of the type of the dense granular flow involved. We conclude that from 1995 to 2005 more than 75% of the erupted volume entered the sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sampling of the El Chichón stratospheric cloud in early May and in late July, 1982, showed that a significant proportion of the cloud consisted of solid particles between 2 μm and 40 μm size. In addition, many particles may have been part of larger aggregates or clusters that ranged in size from < 10 μm to > 50 μm. The majority of individual grains were angular aluminosilicate glass shards with various amounts of smaller, adhering particles. Surface features on individual grains include sulfuric acid droplets and larger (0.5 μm to 1 μm) sulfate gel droplets with various amounts of Na, Mg, Ca and Fe. The sulfate gels probably formed by the interaction of sulfur-rich gases and solid particles within the cloud soon after eruption. Ca-sulfate laths may have formed by condensation within the plume during eruption, or alternatively, at a later stage by the reaction of sulfuric acid aerosols with ash fragments within the stratospheric cloud. A Wilson-Huang formulation for the settling rate of individual particles qualitatively agrees with the observed particle-size distribution for a period at least four months after injection of material into the stratosphere. This result emphasizes the importance of particle shape in controlling the settling rate of volcanic ash from the stratosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first representative chemical, structural, and morphological analysis of the solid particles from a single collection surface has been performed. This collection surface sampled the stratosphere between 17 and 19km in altitude in the summer of 1981, and therefore before the 1982 eruptions of El Chichón. A particle collection surface was washed free of all particles with rinses of Freon and hexane, and the resulting wash was directed through a series of vertically stacked Nucleopore filters. The size cutoff for the solid particle collection process in the stratosphere is found to be considerably less than 1 μm. The total stratospheric number density of solid particles larger than 1μm in diameter at the collection time is calculated to be about 2.7×10−1 particles per cubic meter, of which approximately 95% are smaller than 5μm in diameter. Previous classification schemes are expanded to explicitly recognize low atomic number material. With the single exception of the calcium-aluminum-silicate (CAS) spheres all solid particle types show a logarithmic increase in number concentration with decreasing diameter. The aluminum-rich particles are unique in showing bimodal size distributions. In addition, spheres constitute only a minor fraction of the aluminum-rich material. About 2/3 of the particles examined were found to be shards of rhyolitic glass. This abundant volcanic material could not be correlated with any eruption plume known to have vented directly to the stratosphere. The micrometeorite number density calculated from this data set is 5×10−2 micrometeorites per cubic meter of air, an order of magnitude greater than the best previous estimate. At the collection altitude, the maximum collision frequency of solid particles >5μm in average diameter is calculated to be 6.91×10−16 collisions per second, which indicates negligible contamination of extraterrestrial particles in the stratosphere by solid anthropogenic particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the link between tectonic-driven extensional faulting and volcanism is crucial from a hazard perspective in active volcanic environments, while ancient volcanic successions provide records on how volcanic eruption styles, compositions, magnitudes and frequencies can change in response to extension timing, distribution and intensity. Significantly, incorrect tectonic interpretations can be made when the spatial-temporal-compositional trends of, and source contributions to magmatism are not properly considered. This study draws on intimate relationships of volcanism and extension preserved in the Sierra Madre Occidental (SMO) and Gulf of California (GoC) regions of western Mexico. Here, a major Oligocene rhyolitic ignimbrite “flare-up” (>300,000 km3) switched to a dominantly bimodal and mixed effusive-explosive volcanic phase in the Early Miocene (~100,000 km3), associated with distributed extension and opening of numerous grabens. Rhyolitic dome fields were emplaced along graben edges and at intersections of cross-graben and graben-parallel structures during early stages of graben development. Concomitant with this change in rhyolite eruption style was a change in crustal source as revealed by zircon chronochemistry with rapid rates of rhyolite magma generation due to remelting of mid- to upper crustal, highly differentiated igneous rocks emplaced during earlier SMO magmatism. Extension became more focused ~18 Ma resulting in volcanic activity being localised along the site of GoC opening. This localised volcanism (known as the Comondú “arc”) was dominantly effusive and andesite-dacite in composition. This compositional change resulted from increased mixing of basaltic and rhyolitic magmas rather than fluid flux melting of the mantle wedge above the subducting Guadalupe Plate. A poor understanding of space-time relationships of volcanism and extension has thus led to incorrect past tectonic interpretations of Comondú-age volcanism.