1000 resultados para Elastic Proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of proteins of smooth endoplasmic reticulum (SER) of Leydig cells from immature and admit rats by two-dimensional polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of several new proteins in the adult rats. Administration of human chorionic gonadotropin to immature rats for ten days also resulted in a significant increase as well as the appearance of several new proteins. The general pattern of SDS-PAGE analysis of the SER proteins of Leydig cells resembled that of the adult rat. SDS-PAGE analysis of the SER proteins of Leydig cells from adult rats following deprivation of endogenous luteinizing hormone by administration of antiserum to ovine luteinizing hormone resulted in a pattern which to certain extent resembled that of an immature I at. Western Blot analysis of luteinizing hormone antiserum treated rat Leydig cell proteins revealed a decrease in the 17-alpha-hydroxylase compared to the control. These results provide biochemical evidence for the suggestion that one of the main functions of luteinizing hormone is the control of biogenesis and/or turnover SER of Leydig cells in the rat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural stabilizing property of 2,2,2-trifluoroethanol (TFE) in peptides has been widely demonstrated, More recently, TFE has been shown to enhance secondary structure content in globular proteins, and to influence quaternary interactions in protein multimers. The molecular mechanisms by which TFE exerts its Influence on peptide and protein structures remain poorly understood. The present analysis integrates the known physical properties of TFE with a variety of experimental observations on the interaction of TFE with peptides and proteins and on the properties of fluorocarbons. Two features of TFE, namely the hydrophobicity of the trifluoromethyl group and the hydrogen bonding character (strong donor and poor acceptor), emerge as the most important factors for rationalising the observed effects of TFE. A model is proposed for TFE interaction with peptides which involves an initial replacement of the hydration shell by fluoroalcohol molecules, a process driven by apolar interactions and favourable entropy of dehydration. Subsequent bifurcated hydrogen-bond formation with peptide carbonyl groups, which leave intramolecular interactions unaffected, promotes secondary structure formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic properties of sodium borovanadate glasses have been studied over a wide range of composition using ultrasonic measurements. It is found that variation of different elastic moduli is very similar in any given series of composition. The bulk and shear moduli show a monotonic variation with the covalent bond energy densities calculated from the proposed structural model for these glasses. The bulk moduli also vary as a negative power function of the mean atomic volume. The Debye temperature varies linearly with the glass transition temperature. The implications of the observed behavior have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterisation of cracks is usually done using the well known three basic fracture modes, namely opening, shearing and tearing modes. In isotropic materials these modes are uncoupled and provide a convenient way to define the fracture parameters. It is well known that these fracture modes are coupled in anisotropic materials. In the case of orthotropic materials also, coupling exists between the fracture modes, unless the crack plane coincides with one of the axes of orthotropy. The strength of coupling depends upon the orientation of the axes of orthotropy with respect to the crack plane and so the energy release rate components associated with each of the modes vary with crack orientation. The variation, of these energy release rate components with the crack orientation with respect to orthotropic axes, is analyzed in this paper. Results indicate that in addition to the orthotropic planes there exists other planes with reference to which fracture modes are uncoupled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling and analysis of wave propagation in elastic solids undergoing damage and growth process are reported in this paper. Two types of diagnostic problems, (1) the propagation of waves in the presence of a slow growth process and (2) the propagation of waves in the presence of a fast growth process, are considered. The proposed model employs a slow and a fast time scale and a homogenization technique in the wavelength scale. A detailed analysis of wave dispersion is carried out. A spectral analysis reveals certain low-frequency bands, where the interaction between the wave and the growth process produces acoustic metamaterial-like behavior. Various practical issues in designing an efficient method of acousto-ultrasonic wave based diagnostics of the growth process are discussed. Diagnostics of isotropic damage in a ductile or quasi-brittle solid by using a micro-second pulsating signal is considered for computer simulations, which is to illustrate the practical application of the proposed modeling and analysis. The simulated results explain how an estimate of signal spreading can be effectively employed to detect the presence of a steady-state damage or the saturation of a process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the mechanism by which an unfolded polypeptide chain folds to its unique, functional structure is a primary unsolved problem in biochemistry. Fundamental advances towards understanding how proteins fold have come from kinetic studies, Kinetic studies allow the dissection of the folding pathway of a protein into individual steps that are defined by partially-structured folding intermediates. Improvements in both the structural and temporal resolution of physical methods that are used to monitor the folding process, as well as the development of new methodologies, are now making it possible to obtain detailed structural information on protein folding pathways. The protein engineering methodology has been particularly useful in characterizing the structures of folding intermediates as well as the transition state of folding, Several characteristics of protein folding pathways have begun to emerge as general features for the folding of many different proteins. Progress in our understanding of how structure develops during folding is reviewed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We design rapidly folding sequences by assigning the strongest couplings to the contacts present in a target native state in a two dimensional model of heteropolymers. The pathways to folding and their dependence on the temperature are illustrated via a mapping of the dynamics into motion within the space of the maximally compact cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastodynamic response of a pair of parallel rigid strips embedded in an infinite orthotropic medium due to elastic waves incident normally on the strips has been investigated. The mixed boundary value problem has been solved by the Integral Equation method. The normal stress and the vertical displacement have been derived in closed form. Numerical values of stress intensity factors at inner and outer edges of the strips and vertical displacement at points in the plane of the strips for several orthotropic materials have been calculated and plotted graphically to show the effect of material orthotropy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of Cibacron blue F3GA with ribosome inactivating proteins, ricin, ricin A-chain and momordin has been investigated using difference absorption spectroscopy. Ricin was found to bind the dye with a 20- and 2-fold lower affinity than ricin A-chain and momordin, respectively. A time dependent increase in the amplitude of Cibacron blue difference spectrum in the presence of ricin was observed on addition of beta-mercaptoethanol. Analysis of the kinetic profile of this increase showed a biphasic phenomenon and the observed rates were found to be independent of the concentration of beta-mercaptoethanol. Kinetics of reduction of the intersubunit disulphide bond in ricin by beta-mercaptoethanol showed that reduction pet se is a second order reaction. Therefore, the observed changes in the difference spectra of Cibacron blue probably indicate a slow change in the conformation of ricin, triggered by reduction of the intersubunit disulphide bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elucidation of the detailed structural features and sequence requirements for iv helices of various lengths could be very important in understanding secondary structure formation in proteins and, hence. in the protein folding mechanism. An algorithm to characterize the geometry of an alpha helix from its C-alpha coordinates has been developed and used to analyze the structures of long cu helices (number of residues greater than or equal to 25) found in globular proteins, the crystal structure coordinates of which are available from the Brookhaven Protein Data Bank, Ail long a helices can be unambiguously characterized as belonging to one of three classes: linear, curved, or kinked, with a majority being curved. Analysis of the sequences of these helices reveals that the long alpha helices have unique sequence characteristics that distinguish them from the short alpha helices in globular proteins, The distribution and statistical propensities of individual amino acids to occur in long alpha heices are different from those found in short alpha helices, with amino acids having longer side chains and/or having a greater number of functional groups occurring more frequently in these helices, The sequences of the long alpha helices can be correlated with their gross structural features, i.e., whether they are curved, linear, or kinked, and in case of the curved helices, with their curvature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-frequency analysis of various simulated and experimental signals due to elastic wave scattering from damage are performed using wavelet transform (WT) and Hilbert-Huang transform (HHT) and their performances are compared in context of quantifying the damages. Spectral finite element method is employed for numerical simulation of wave scattering. An analytical study is carried out to study the effects of higher-order damage parameters on the reflected wave from a damage. Based on this study, error bounds are computed for the signals in the spectral and also on the time-frequency domains. It is shown how such an error bound can provide all estimate of error in the modelling of wave propagation in structure with damage. Measures of damage based on WT and HHT is derived to quantify the damage information hidden in the signal. The aim of this study is to obtain detailed insights into the problem of (1) identifying localised damages (2) dispersion of multifrequency non-stationary signals after they interact with various types of damage and (3) quantifying the damages. Sensitivity analysis of the signal due to scattered wave based on time-frequency representation helps to correlate the variation of damage index measures with respect to the damage parameters like damage size and material degradation factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, two families of asymptotic near-tip stress fields are constructed in an elastic-ideally plastic FCC single crystal under mode I plane strain conditions. A crack is taken to lie on the (010) plane and its front is aligned along the [(1) over bar 01] direction. Finite element analysis is first used to systematically examine the stress distributions corresponding to different constraint levels. The general framework developed by Rice (Mech Mater 6:317-335, 1987) and Drugan (J Mech Phys Solids 49:2155-2176, 2001) is then adopted to generate low triaxiality solutions by introducing an elastic sector near the crack tip. The two families of stress fields are parameterized by the normalized opening stress (tau(A)(22)/tau(o)) prevailing in the plastic sector in front of the tip and by the coordinates of a point where elastic unloading commences in stress space. It is found that the angular stress variations obtained from the analytical solutions show good agreement with finite element analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A perfectly plastic von Mises model is proposed to study the elastic-plastic behavior of a porous hierarchical scaffold used for bone regeneration. The proposed constitutive model is implemented in a finite element (FE) routine to obtain the stress-strain relationship of a uniaxially loaded cube of the scaffold, whose constituent is considered to be composed of cortical bone. The results agree well with experimental data for uniaxial loading case of a cancellous bone. We find that the unhomogenized stress distribution results in different mechanical properties from but still comparable to our previous theory. The scaffold is a promising candidate for bone regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface effect on the four independent elastic constants of nanohoneycombs is investigated in this paper. The axial deformation of the horizontal cell wall is included, comparing to the Gibson's method, and the contributions of the two components of surface stress (i.e. surface residual stress and surface elasticity) are discussed. The result shows that the regular hexagonal honeycomb is not isotropic but orthotropic. An increase in the cell-wall thickness t leads to an increase in the discrepancy of the Young's moduli in both directions. Furthermore, the surface residual stress dominates the surface effect on the elastic constants when t < 15 nm (or the relative density <0.17), which is in contrast to that the surface elasticity does when t > 15 nm (or the relative density > 0.17) for metal Al. The present structure and theory may be useful in the design of future nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic properties of the arterial wall have been the subject of physiological, clinical and biomedical research for many years. There is convincing evidence that the elastic properties of the large arteries are seriously impaired in the presence of cardiovascular disease (CVD), due to alterations in the intrinsic structural and functional characteristics of vessels [1]. Early detection of changes in the elastic modulus of arteries would provide a powerful tool for both monitoring patients at high cardiovascular risk and testing the effects of pharmaceuticals aimed at stabilizing existing plaques by stiffening them or lowering the lipids.