971 resultados para Effective range
Resumo:
Effective collision strengths for the 10 astrophysically important fine-structure forbidden transitions among the 4So, 2Do and 2Po levels in the 3s23p3 configuration of Cl III are presented. The calculation employs the multichannel R-matrix method to compute the electron-impact excitation collision strengths in a close-coupling expansion, which incorporates the lowest 23 LS target eigenstates of Cl III. These states are formed from the 3s23p3, 3s3p4, 3s23p23d and 3s23p24s configurations. The Maxwellian-averaged effective collision strengths are presented graphically for all 10 fine-structure transitions over a wide range of electron temperatures appropriate for astrophysical applications [log T(K) = 3.3 - log T(K) = 5.9]. Comparisons are made with the earlier seven-state close-coupling calculation of Butler & Zeippen, and in general excellent agreement is found in the low-temperature region where a comparison is possible [log T(K) = 3.3 - log T(K) = 4.7]. However, discrepancies of up to 30 per cent are found to occur for the forbidden transitions which involve the 4So ground state level, particularly for the lowest temperatures considered. At the higher temperatures, the present data are the only reliable results currently available.
Resumo:
Effective collision strengths for electron-impact excitation of the N-like ion S x are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4SO, 2Do and 2Po levels in the 2s22p3 ground configuration. The total (e- + ion) wavefunction is expanded in terms of the 11 lowest LS eigenstates of S x, and each eigenstate is represented by extensive configuration-interaction wavefunctions. The collision strengths obtained are thermally averaged over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T(K) = 4.6-6.7 (the range appropriate for astrophysical applications). The present effective collision strengths are the only results currently available for these fine-structure transition rates.
Resumo:
Effective collision strengths for electron-impact excitation of the N-like ion NeIV are calculated in the close-coupling approximation using the multichannel R-matrix method. Specific attention is given to the 10 astrophysically important fine-structure forbidden transitions among the 4So, 2Do and 2Po levels in the 2s22p3 ground-state configuration. The expansion of the total wavefunction incorporates the lowest 11 LS eigenstates of NeIV, consisting of eight n = 2 terms with configurations 2s22p3, 2s2p4 and 2p5, together with three n = 3 states of configuration 2s22p23s. We present in graphical form the effective collision strengths obtained by thermally averaging the collision strengths over a Maxwellian distribution of velocities, for all 10 fine-structure transitions, over the range of electron temperatures log T(K) = 3.6 to log T(K) = 6.1 (the range appropriate for astrophysical applications). Comparisons are made with the earlier, less sophisticated close-coupling calculation of Giles, and excellent agreement is found in the limited temperature region where a comparison is possible [log T(K) = 3.7 to log 7(K) = 4.3]. At higher temperatures the present data are the only reliable results currently available.
Resumo:
The multichannel R-matrix method is used to compute electron impact excitation collision strengths in Ar IV for all fine-structure transitions among the 4S°, 2D° and 2P° levels in the 3s 23p 3 ground configuration. Included in the expansion of the total wavefunction are the lowest 13 LS target eigenstates of Ar iv formed from the 3s 23p 3, 3s3p 4 and 3s 23p 23d configurations. The effective collision strengths, obtained by averaging the electron collision strengths over a Maxwellian distribution of electron velocities, are presented for all 10 fine-structure transitions over a wide range of electron temperatures of astrophysical interest (T e = 2000-100 000 K). Comparisons are made with an earlier 7-state close-coupling calculation by Zeippen, Butler & Le Bourlot, and significant differences are found to occur for many of the forbidden transitions considered, in particular those involving the 4S° ground state, where discrepancies of up to a factor of 3 are found in the low-temperature region. © 1997 RAS.
Resumo:
Understanding the genetic composition and mating systems of edge populations provides important insights into the environmental and demographic factors shaping species’ distribution ranges. We analysed samples of the mangrove Avicennia marina from Vietnam, northern Philippines and Australia, with microsatellite markers. We compared genetic diversity and structure in edge (Southeast Asia, and Southern Australia) and core (North and Eastern Australia) populations, and also compared our results with previously published data from core and southern edge populations. Comparisons highlighted significantly reduced gene diversity and higher genetic structure in both margins compared to core populations, which can be attributed to very low effective population size, pollinator scarcity and high environmental pressure at distribution margins. The estimated level of inbreeding was significantly higher in northeastern populations compared to core and southern populations. This suggests that despite the high genetic load usually associated with inbreeding, inbreeding or even selfing may be advantageous in margin habitats due to the possible advantages of reproductive assurance, or local adaptation. The very high level of genetic structure and inbreeding show that populations of A. marina are functioning as independent evolutionary units more than as components of a metapopulation system connected by gene flow. The combinations of those characteristics make these peripheral populations likely to develop local adaptations and therefore to be of particular interest for conservation strategies as well as for adaptation to possible future environmental changes.
Resumo:
Background Birch pollen is highly allergic and has the potential for episodically long range transport. Such episodes will in general occur out of the main pollen season. During that time allergy patients are unprotected and high pollen concentrations will therefore have a full allergenic impact. Objective To show that Denmark obtains significant quantities of birch pollen from Poland or Germany before the local trees start to flower. Methods Simultaneous observations of pollen concentrations and phenology in the potential source area in Poland as well as in Denmark were performed in 2006. The Danish pollen records from 2000-2006 were analysed for possible long range transport episodes and analysed with trajectories in combination with a birch tree source map. Results In 2006 high pollen concentrations were observed in Denmark with bi-hourly concentrations above 500 grains/ m3 before the local trees began to flower. Poland was identified as a source region. The analysis of the historical pollen record from Copenhagen shows significant pre-seasonal pollen episodes almost every year from 2000-2006. In all episodes trajectory analysis identified Germany or Poland as source regions. Conclusion Denmark obtains significant pre-seasonal quantities of birch pollen from either Poland or Germany almost every year. Forecasting of birch pollen quantities relevant to allergy patients must therefore take into account long-range transport. This cannot be based on measured concentrations in Denmark. The most effective way to improve the current Danish pollen forecasts is to extend the current forecasts with atmospheric transport models that take into account pollen emission and transport from countries such as Germany and Poland. Unless long range transport is taken into account pre-seasonal pollen episodes will have a full allergic impact, as the allergy patients in general will be unprotected during that time.
Resumo:
Accurately calibrated effective field theories are used to compute atomic parity nonconserving (APNC) observables. Although accurately calibrated, these effective field theories predict a large spread in the neutron skin of heavy nuclei. Whereas the neutron skin is strongly correlated to numerous physical observables, in this contribution we focus on its impact on new physics through APNC observables. The addition of an isoscalar-isovector coupling constant to the effective Lagrangian generates a wide range of values for the neutron skin of heavy nuclei without compromising the success of the model in reproducing well-constrained nuclear observables. Earlier studies have suggested that the use of isotopic ratios of APNC observables may eliminate their sensitivity to atomic structure. This leaves nuclear structure uncertainties as the main impediment for identifying physics beyond the standard model. We establish that uncertainties in the neutron skin of heavy nuclei are at present too large to measure isotopic ratios to better than the 0.1% accuracy required to test the standard model. However, we argue that such uncertainties will be significantly reduced by the upcoming measurement of the neutron radius in 208^Pb at the Jefferson Laboratory.
Resumo:
Details about the parameters of kinetic systems are crucial for progress in both medical and industrial research, including drug development, clinical diagnosis and biotechnology applications. Such details must be collected by a series of kinetic experiments and investigations. The correct design of the experiment is essential to collecting data suitable for analysis, modelling and deriving the correct information. We have developed a systematic and iterative Bayesian method and sets of rules for the design of enzyme kinetic experiments. Our method selects the optimum design to collect data suitable for accurate modelling and analysis and minimises the error in the parameters estimated. The rules select features of the design such as the substrate range and the number of measurements. We show here that this method can be directly applied to the study of other important kinetic systems, including drug transport, receptor binding, microbial culture and cell transport kinetics. It is possible to reduce the errors in the estimated parameters and, most importantly, increase the efficiency and cost-effectiveness by reducing the necessary amount of experiments and data points measured. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
We describe and evaluate a new estimator of the effective population size (N-e), a critical parameter in evolutionary and conservation biology. This new "SummStat" N-e. estimator is based upon the use of summary statistics in an approximate Bayesian computation framework to infer N-e. Simulations of a Wright-Fisher population with known N-e show that the SummStat estimator is useful across a realistic range of individuals and loci sampled, generations between samples, and N-e values. We also address the paucity of information about the relative performance of N-e estimators by comparing the SUMMStat estimator to two recently developed likelihood-based estimators and a traditional moment-based estimator. The SummStat estimator is the least biased of the four estimators compared. In 32 of 36 parameter combinations investigated rising initial allele frequencies drawn from a Dirichlet distribution, it has the lowest bias. The relative mean square error (RMSE) of the SummStat estimator was generally intermediate to the others. All of the estimators had RMSE > 1 when small samples (n = 20, five loci) were collected a generation apart. In contrast, when samples were separated by three or more generations and Ne less than or equal to 50, the SummStat and likelihood-based estimators all had greatly reduced RMSE. Under the conditions simulated, SummStat confidence intervals were more conservative than the likelihood-based estimators and more likely to include true N-e. The greatest strength of the SummStat estimator is its flexible structure. This flexibility allows it to incorporate any, potentially informative summary statistic from Population genetic data.
Resumo:
PURPOSE: Most studies on probiotics utilise single strains, sometimes incorporated into yoghurts. There are fewer studies on efficacy of mixtures of probiotic strains. This review examines the evidence that (a) probiotic mixtures are beneficial for a range of health-related outcomes and (b) mixtures are more or less effective than their component strains administered separately. RESULTS: Mixtures of probiotics had beneficial effects on the end points including irritable bowel syndrome and gut function, diarrhoea, atopic disease, immune function and respiratory tract infections, gut microbiota modulation, inflammatory bowel disease and treatment of Helicobacter pylori infection. However, only 16 studies compared the effect of a mixture with that of its component strains separately, although in 12 cases (75%), the mixture was more effective. CONCLUSION: Probiotic mixtures appear to be effective against a wide range of end points. Based on a limited number of studies, multi-strain probiotics appear to show greater efficacy than single strains, including strains that are components of the mixtures themselves. However, whether this is due to synergistic interactions between strains or a consequence of the higher probiotic dose used in some studies is at present unclear.
Resumo:
Probiotic mixtures appear to be effective against a wide range of end points. Based on a limited number of studies, multi-strain probiotics appear to show greater efficacy than single strains, including strains that are components of the mixtures themselves. However, whether this is due to synergistic interactions between strains or a consequence of the higher probiotic dose used in some studies is at present unclear.
Resumo:
Background. Meta-analyses show that cognitive behaviour therapy for psychosis (CBT-P) improves distressing positive symptoms. However, it is a complex intervention involving a range of techniques. No previous study has assessed the delivery of the different elements of treatment and their effect on outcome. Our aim was to assess the differential effect of type of treatment delivered on the effectiveness of CBT-P, using novel statistical methodology. Method. The Psychological Prevention of Relapse in Psychosis (PRP) trial was a multi-centre randomized controlled trial (RCT) that compared CBT-P with treatment as usual (TAU). Therapy was manualized, and detailed evaluations of therapy delivery and client engagement were made. Follow-up assessments were made at 12 and 24 months. In a planned analysis, we applied principal stratification (involving structural equation modelling with finite mixtures) to estimate intention-to-treat (ITT) effects for subgroups of participants, defined by qualitative and quantitative differences in receipt of therapy, while maintaining the constraints of randomization. Results. Consistent delivery of full therapy, including specific cognitive and behavioural techniques, was associated with clinically and statistically significant increases in months in remission, and decreases in psychotic and affective symptoms. Delivery of partial therapy involving engagement and assessment was not effective. Conclusions. Our analyses suggest that CBT-P is of significant benefit on multiple outcomes to patients able to engage in the full range of therapy procedures. The novel statistical methods illustrated in this report have general application to the evaluation of heterogeneity in the effects of treatment.
Resumo:
A simple procedure was developed for packing PicoFrit HPLC columns with chromatographic stationary phase using a reservoir fabricated from standard laboratory HPLC fittings. Packed columns were mounted onto a stainless steel ultra-low volume precolumn filter assembly containing a 0.5-mu m pore size steel frit. This format provided a conduit for the application of the nanospray voltage and protected the column from obstruction by sample material. The system was characterised and operational performance assessed by analysis of a range of peptide standards (n = 9).
Resumo:
This letter presents an effective approach for selection of appropriate terrain modeling methods in forming a digital elevation model (DEM). This approach achieves a balance between modeling accuracy and modeling speed. A terrain complexity index is defined to represent a terrain's complexity. A support vector machine (SVM) classifies terrain surfaces into either complex or moderate based on this index associated with the terrain elevation range. The classification result recommends a terrain modeling method for a given data set in accordance with its required modeling accuracy. Sample terrain data from the lunar surface are used in constructing an experimental data set. The results have shown that the terrain complexity index properly reflects the terrain complexity, and the SVM classifier derived from both the terrain complexity index and the terrain elevation range is more effective and generic than that designed from either the terrain complexity index or the terrain elevation range only. The statistical results have shown that the average classification accuracy of SVMs is about 84.3% ± 0.9% for terrain types (complex or moderate). For various ratios of complex and moderate terrain types in a selected data set, the DEM modeling speed increases up to 19.5% with given DEM accuracy.
Resumo:
Landscape scale habitat restoration has the potential to reconnect habitats in fragmented landscapes. This study investigates landscape connectivity as a key to effective habitat restoration in lowland agricultural landscapes and applies these findings to transferable management recommendations. The study area is the Stonehenge World Heritage Site, UK, where landscape scale chalk grassland restoration has been implemented. Here, the ecological benefits of landscape restoration and the species, habitat and landscape characteristics that facilitate or impede the enhancement of biodiversity and landscape connectivity were investigated. Lepidoptera were used as indictors of restoration success and results showed restoration grasslands approaching the ecological conditions of the target chalk grassland habitat and increasing in biodiversity values within a decade. Restoration success is apparent for four species with a broad range of grass larval host plants (e.g. Melanargia galathea, Maniola jurtina) or with intermediate mobility (Polyommatus icarus). However, two species with specialist larval host plants and low mobility (Lysandra bellargus), are restricted to chalk grassland fragments. Studies of restoration grassland of different ages show that recent grassland restoration (1 or 2 years old) may reduce the functional isolation of chalk grassland fragments. A management experiment showed that mowing increases boundary following behaviour in two species of grassland Lepidoptera; Maniola jurtina and Zygaena filipendulae. Analysis of the landscape scale implications of the grassland restoration illustrates an increase in grassland habitat network size and in landscape connectivity, which is likely to benefit the majority of grassland associated Lepidoptera. Landscape and habitat variables can be managed to increase the success of restoration projects including the spatial targeting of receptor sites, vegetation structure and selection of seed source and management recommendations are provided that are transferrable to other species-rich grassland landscape scale restoration projects. Overall results show restoration success for some habitats and species within a decade. However, additional management is required to assist the re-colonisation of specialist species. Despite this, habitat restoration at the landscape scale can be an effective, long term approach to enhance butterfly biodiversity and landscape connectivity.