905 resultados para Ecosystem functioning
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long-term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. The strong biosphere-atmosphere interaction is a key component of the ecosystem functioning. Two aerosol components are the most visible: The natural biogenic emissions of particles and VOCs, and the biomass burning emissions. Two aerosol and trace gases monitoring stations were operated for 4 years in Manaus and Porto Velho, two very distinct sites, with different land use change. Manaus is a very clean and pristine site and Porto Velho is representative of heavy land use change in Amazonia. Aerosol composition, optical properties, size distribution, vertical profiling and optical depth were measured from 2008 to 2012. Aerosol radiative forcing was calculated over large areas. It was observed that the natural biogenic aerosol has significant absorption properties. Organic aerosol dominates the aerosol mass with 80 to 95%. Light scattering and light absorption shows an increase by factor of 10 from Manaus to Porto Velho. Very few new particle formation events were observed. Strong links between aerosols and VOC emissions were observed. Aerosol radiative forcing in Rondonia shows a high -15 watts/m² during the dry season of 2010, showing the large impacts of aerosol loading in the Amazonian ecosystem. The increase in diffuse radiation changes the forest carbon uptake by 20 to 35%, a large increase in this important ecosystem.
Resumo:
Atmospheric nitrogen (N) and phosphorus (P) depositions are expected to increase in the tropicsrnas a consequence of increasing human activities in the next decades. Furthermore, a possiblernshortened El Niño Southern Oscillation cycle might come along with more frequent calcium (Ca)rndepositions on the eastern slope of the Ecuadorian Andes originating from Saharan dust. It isrncrucial to understand the response of the old-growth montane forest in Ecuador to increasedrnnutrient deposition to predict the further development of this megadiverse ecosystem.rnI studied experimental additions of N, P, N+P and Ca to the forest and an untreatedrncontrol, all in a fourfold replicated randomized block design. These experiments were conductedrnin the framework of a collaborative research effort, the NUtrient Manipulation EXperimentrn(NUMEX). I collected litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfallrnand fine litterfall samples and determined N, P and Ca concentrations and fluxes. This approachrnalso allowed me to assess whether N, P and/or Ca are limiting nutrients for forest growth.rnFurthermore, I evaluated the response of fine root biomass, leaf area index, leaf area and specificrnleaf area, tree diameter growth and basal area increment contributed from a cooperating group inrnthe Ca applied and control treatments.rnDuring the observation period of 16 months after the first fertilizer application, less thanrn10, 1 and 5% of the applied N, P and Ca, respectively, leached below the organic layer whichrncontained almost all roots but no significant leaching losses occurred to the deeper mineral soil.rnDeposited N, P and Ca from the atmosphere in dry and wet form were, on balance, retained in therncanopy in the control treatment. Retention of N, P and Ca in the canopy in their respectiverntreatments was reduced resulting in higher concentrations and fluxes of N, P and Ca inrnthroughfall and litterfall. Up to 2.5% of the applied N and 2% of the applied P and Ca werernrecycled to the soil with throughfall. Fluxes of N, P and Ca in throughfall+litterfall were higher inrnthe fertilized treatments than in the control; up to 20, 5 and 25% of the applied N, P and Ca,rnrespectively, were recycled to the soil with throughfall+litterfall.rnIn the Ca-applied plots, fine root biomass decreased significantly. Also the leaf area of thernfour most common tree species tended to decrease and the specific leaf area increasedrnsignificantly in Graffenrieda emarginata Triana, the most common tree species in the study area.rnThese changes are known plant responses to reduced nutrient stress. Reduced aluminium (Al)rntoxicity as an explanation of the Ca effect was unlikely, because of almost complete organocomplexationrnof Al and molar Ca:Al concentration ratios in solution above the toxicity threshold.rnThe results suggest that N, P and Ca co-limit the forest ecosystem functioning in thernnorthern Andean montane forests in line with recent assumptions in which different ecosystemrncompartments and even different phenological stages may show different nutrient limitationsrn(Kaspari et al. 2008). I conclude that (1) the expected elevated N and P deposition will bernretained in the ecosystem, at least in the short term and hence, quality of river water will not bernendangered and (2) increased Ca input will reduce nutrient stress of the forest.
Resumo:
So far, seed limitation as a local process, and dispersal limitation as a regional process have been largely neglected in biodiversity-ecosystem functioning research. However, these processes can influence both local plant species diversity and ecosystem processes, such as biomass production. We added seeds of 60 species from the regional species pool to grassland communities at 20 montane grassland sites in Germany. In these sites, plant species diversity ranged from 10 to 34 species m(-2) and, before manipulation, diversity was not related to aboveground biomass, which ranged from 108 to 687 g m(-2). One year after seed addition, local plant species richness had increased on average by six species m(-2) (29%) compared with control plots, and this increase was highest in grasslands with intermediate productivity. The increased diversity after adding seeds was associated with an average increase of aboveground biomass of 36 g m(-2) (14.8%) compared with control plots. Thus, our results demonstrate that a positive relationship between changes in species richness and productivity, as previously reported from experimental plant communities, also holds for natural grassland ecosystems. Our results show that local plant communities are dispersal limited and a hump-shaped model appears to be the limiting outline of the natural diversity-productivity relationship. Hence, the effects of dispersal on local diversity can substantially affect the functioning of natural ecosystems.
Resumo:
In the course of the biodiversity-ecosystem functioning debate, the issue of multifunctionality of species communities has recently become a major focus. Elemental stoichiometry is related to a variety of processes reflecting multiple plant responses to the biotic and abiotic environment. It can thus be expected that the diversity of a plant assemblage alters community level plant tissue chemistry. We explored elemental stoichiometry in aboveground plant tissue (ratios of carbon, nitrogen, phosphorus, and potassium) and its relationship to plant diversity in a 5-year study in a large grassland biodiversity experiment (Jena Experiment). Species richness and functional group richness affected community stoichiometry, especially by increasing C:P and N:P ratios. The primacy of either species or functional group richness effects depended on the sequence of testing these terms, indicating that both aspects of richness were congruent and complementary to expected strong effects of legume presence and grass presence on plant chemical composition. Legumes and grasses had antagonistic effects on C:N (−27.7% in the presence of legumes, +32.7% in the presence of grasses). In addition to diversity effects on mean ratios, higher species richness consistently decreased the variance of chemical composition for all elemental ratios. The diversity effects on plant stoichiometry has several non-exclusive explanations: The reduction in variance can reflect a statistical averaging effect of species with different chemical composition or a optimization of nutrient uptake at high diversity, leading to converging ratios at high diversity. The shifts in mean ratios potentially reflect higher allocation to stem tissue as plants grew taller at higher richness. By showing a first link between plant diversity and stoichiometry in a multiyear experiment, our results indicate that losing plant species from grassland ecosystems will lead to less reliable chemical composition of forage for herbivorous consumers and belowground litter input.
Resumo:
Biological diversity within species can be an important driver of population and ecosystem functioning. Until now, such within-species diversity effects have been attributed to underlying variation in DNA sequence. However, within-species differences, and thus potentially functional biodiversity, can also be created by epigenetic variation. Here, we show that epigenetic diversity increases the productivity and stability of plant populations. Epigenetically diverse populations of Arabidopsis thaliana produce up to 40% more biomass than epigenetically uniform populations. The positive epigenetic diversity effects are strongest when populations are grown together with competitors and infected with pathogens, and they seem to be partly driven by complementarity among epigenotypes. Our study has two implications: first, we may need to re-evaluate previous within-species diversity studies where some effects could reflect epigenetic diversity; second, we need to incorporate epigenetics into basic ecological research, by quantifying natural epigenetic diversity and testing for its ecological consequences across many different species.
Resumo:
Distinguishing organic and conventional products is a major issue of food security and authenticity. Previous studies successfully used stable isotopes to separate organic and conventional products, but up to now, this approach was not tested for organic grassland hay and soil. Moreover, isotopic abundances could be a powerful tool to elucidate differences in ecosystem functioning and driving mechanisms of element cycling in organic and conventional management systems. Here, we studied the delta N-15 and delta C-13 isotopic composition of soil and hay samples of 21 organic and 34 conventional grasslands in two German regions. We also used Delta delta N-15 (delta N-15 plant - delta N-15 soil) to characterize nitrogen dynamics. In order to detect temporal trends, isotopic abundances in organic grasslands were related to the time since certification. Furthermore, discriminant analysis was used to test whether the respective management type can be deduced from observed isotopic abundances. Isotopic analyses revealed no significant differences in delta C-13 in hay and delta C-13 in both soil and hay between management types, but showed that delta C-13 abundances were significantly lower in soil of organic compared to conventional grasslands. delta C-15 values implied that management types did not substantially differ in nitrogen cycling. Only delta C-13 in soil and hay showed significant negative relationships with the time since certification. Thus, our result suggest that organic grasslands suffered less from drought stress compared to conventional grasslands most likely due to a benefit of higher plant species richness, as previously shown by manipulative biodiversity experiments. Finally, it was possible to correctly classify about two third of the samples according to their management using isotopic abundances in soil and hay. However, as more than half of the organic samples were incorrectly classified, we infer that more research is needed to improve this approach before it can be efficiently used in practice.
Resumo:
1. Biodiversity-ecosystem functioning (BEF) experiments address ecosystem-level consequences of species loss by comparing communities of high species richness with communities from which species have been gradually eliminated. BEF experiments originally started with microcosms in the laboratory and with grassland ecosystems. A new frontier in experimental BEF research is manipulating tree diversity in forest ecosystems, compelling researchers to think big and comprehensively. 2. We present and discuss some of the major issues to be considered in the design of BEF experiments with trees and illustrate these with a new forest biodiversity experiment established in subtropical China (Xingangshan, Jiangxi Province) in 2009/2010. Using a pool of 40 tree species, extinction scenarios were simulated with tree richness levels of 1, 2, 4, 8 and 16 species on a total of 566 plots of 25.8x25.8m each. 3. The goal of this experiment is to estimate effects of tree and shrub species richness on carbon storage and soil erosion; therefore, the experiment was established on sloped terrain. The following important design choices were made: (i) establishing many small rather than fewer larger plots, (ii) using high planting density and random mixing of species rather than lower planting density and patchwise mixing of species, (iii) establishing a map of the initial ecoscape' to characterize site heterogeneity before the onset of biodiversity effects and (iv) manipulating tree species richness not only in random but also in trait-oriented extinction scenarios. 4. Data management and analysis are particularly challenging in BEF experiments with their hierarchical designs nesting individuals within-species populations within plots within-species compositions. Statistical analysis best proceeds by partitioning these random terms into fixed-term contrasts, for example, species composition into contrasts for species richness and the presence of particular functional groups, which can then be tested against the remaining random variation among compositions. 5. We conclude that forest BEF experiments provide exciting and timely research options. They especially require careful thinking to allow multiple disciplines to measure and analyse data jointly and effectively. Achieving specific research goals and synergy with previous experiments involves trade-offs between different designs and requires manifold design decisions.