914 resultados para Ecological model
Resumo:
Pesticides used in agricultural systems must be applied in economically viable and environmentally sensitive ways, and this often requires expensive field trials on spray deposition and retention by plant foliage. Computational models to describe whether a spray droplet sticks (adheres), bounces or shatters on impact, and if any rebounding parent or shatter daughter droplets are recaptured, would provide an estimate of spray retention and thereby act as a useful guide prior to any field trials. Parameter-driven interactive software has been implemented to enable the end-user to study and visualise droplet interception and impaction on a single, horizontal leaf. Living chenopodium, wheat and cotton leaves have been scanned to capture the surface topography and realistic virtual leaf surface models have been generated. Individual leaf models have then been subjected to virtual spray droplets and predictions made of droplet interception with the virtual plant leaf. Thereafter, the impaction behaviour of the droplets and the subsequent behaviour of any daughter droplets, up until re-capture, are simulated to give the predicted total spray retention by the leaf. A series of critical thresholds for the stick, bounce, and shatter elements in the impaction process have been developed for different combinations of formulation, droplet size and velocity, and leaf surface characteristics to provide this output. The results show that droplet properties, spray formulations and leaf surface characteristics all influence the predicted amount of spray retained on a horizontal leaf surface. Overall the predicted spray retention increases as formulation surface tension, static contact angle, droplet size and velocity decreases. Predicted retention on cotton is much higher than on chenopodium. The average predicted retention on a single horizontal leaf across all droplet size, velocity and formulations scenarios tested, is 18, 30 and 85% for chenopodium, wheat and cotton, respectively.
Resumo:
Carrying capacity assessments model a population’s potential self-sufficiency. A crucial first step in the development of such modelling is to examine the basic resource-based parameters defining the population’s production and consumption habits. These parameters include basic human needs such as food, water, shelter and energy together with climatic, environmental and behavioural characteristics. Each of these parameters imparts land-usage requirements in different ways and varied degrees so their incorporation into carrying capacity modelling also differs. Given that the availability and values of production parameters may differ between locations, no two carrying capacity models are likely to be exactly alike. However, the essential parameters themselves can remain consistent so one example, the Carrying Capacity Dashboard, is offered as a case study to highlight one way in which these parameters are utilised. While examples exist of findings made from carrying capacity assessment modelling, to date, guidelines for replication of such studies in other regions and scales have largely been overlooked. This paper addresses such shortcomings by describing a process for the inclusion and calibration of the most important resource-based parameters in a way that could be repeated elsewhere.
Resumo:
BACKGROUND Pandemic influenza A (H1N1) has a significant public health impact. This study aimed to examine the effect of socio-ecological factors on the transmission of H1N1 in Brisbane, Australia. METHODOLOGY We obtained data from Queensland Health on numbers of laboratory-confirmed daily H1N1 in Brisbane by statistical local areas (SLA) in 2009. Data on weather and socio-economic index were obtained from the Australian Bureau of Meteorology and the Australian Bureau of Statistics, respectively. A Bayesian spatial conditional autoregressive (CAR) model was used to quantify the relationship between variation of H1N1 and independent factors and to determine its spatiotemporal patterns. RESULTS Our results show that average increase in weekly H1N1 cases were 45.04% (95% credible interval (CrI): 42.63-47.43%) and 23.20% (95% CrI: 16.10-32.67%), for a 1 °C decrease in average weekly maximum temperature at a lag of one week and a 10mm decrease in average weekly rainfall at a lag of one week, respectively. An interactive effect between temperature and rainfall on H1N1 incidence was found (changes: 0.71%; 95% CrI: 0.48-0.98%). The auto-regression term was significantly associated with H1N1 transmission (changes: 2.5%; 95% CrI: 1.39-3.72). No significant association between socio-economic indexes for areas (SEIFA) and H1N1 was observed at SLA level. CONCLUSIONS Our results demonstrate that average weekly temperature at lag of one week and rainfall at lag of one week were substantially associated with H1N1 incidence at a SLA level. The ecological factors seemed to have played an important role in H1N1 transmission cycles in Brisbane, Australia.
Resumo:
In recent years a number of urban sustainability assessment frameworks are developed to better inform policy formulation and decision-making processes. This paper introduces one of these attempts in developing a comprehensive assessment tool—i.e., Micro-level Urban-ecosystem Sustainability IndeX (MUSIX). Being an indicator-based indexing model, MUSIX investigates the environmental impacts of land-uses on urban sustainability by measuring urban ecosystem components in local scale. The paper presents the methodology of MUSIX and demonstrates the performance of the model in a pilot test-bed—i.e., in Gold Coast, Australia. The model provides useful insights on the sustainability performance of the test-bed area. The parcel-scale findings of the indicators are used to identify local problems considering six main issues of urban development—i.e., hydrology; ecology; pollution; location; design, and; efficiency. The composite index score is used to propose betterment strategies to guide the development of local area plans in conjunction with the City's Planning Scheme. In overall, this study has shown that parcel-scale environmental data provides an overview of the local sustainability in urban areas as in the example of Gold Coast, which can also be used for setting environmental policy, objectives and targets.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
Landscape change is an ongoing process even within established urban landscapes. Yet, analyses of fragmentation and deforestation have focused primarily on the conversion of non-urban to urban landscapes in rural landscapes and ignored urban landscapes. To determine the ecological effects of continued urbanization in urban landscapes, tree-covered patches were mapped in the Gwynns Falls watershed (17158.6 ha) in Maryland for 1994 and 1999 to document fragmentation, deforestation, and reforestation. The watershed was divided into lower (urban core), middle (older suburbs), and upper (recent suburbs) subsections. Over the entire watershed a net of 264.5 of 4855.5 ha of tree-covered patches were converted to urban land use-125 new tree-covered patches were added through fragmentation, 4 were added through reforestation, 43 were lost through deforestation, and 7 were combined with an adjacent patch. In addition, 180 patches were reduced in size. In the urban core, deforestation continued with conversion to commercial land use. Because of the lack of vegetation, commercial land uses are problematic for both species conservation and derived ecosystem benefits. In the lower subsection, shape complexity increased for tree-covered patches less than 10 ha. Changes in shape resulted from canopy expansion, planted materials, and reforestation of vacant sites. In the middle and upper subsections, the shape index value for tree-covered patches decreased, indicating simplification. Density analyses of the subsections showed no change with respect to patch densities but pointed out the importance of small patches (≤5 ha) as "stepping stone" to link large patches (e. g., ≥100 ha). Using an urban forest effect model, we estimated, for the entire watershed, total carbon loss and pollution removal, from 1994 to 1999, to be 14,235,889.2 kg and 13,011.4 kg, respectively due to urban land-use conversions.
Resumo:
Motivated by the analysis of the Australian Grain Insect Resistance Database (AGIRD), we develop a Bayesian hurdle modelling approach to assess trends in strong resistance of stored grain insects to phosphine over time. The binary response variable from AGIRD indicating presence or absence of strong resistance is characterized by a majority of absence observations and the hurdle model is a two step approach that is useful when analyzing such a binary response dataset. The proposed hurdle model utilizes Bayesian classification trees to firstly identify covariates and covariate levels pertaining to possible presence or absence of strong resistance. Secondly, generalized additive models (GAMs) with spike and slab priors for variable selection are fitted to the subset of the dataset identified from the Bayesian classification tree indicating possibility of presence of strong resistance. From the GAM we assess trends, biosecurity issues and site specific variables influencing the presence of strong resistance using a variable selection approach. The proposed Bayesian hurdle model is compared to its frequentist counterpart, and also to a naive Bayesian approach which fits a GAM to the entire dataset. The Bayesian hurdle model has the benefit of providing a set of good trees for use in the first step and appears to provide enough flexibility to represent the influence of variables on strong resistance compared to the frequentist model, but also captures the subtle changes in the trend that are missed by the frequentist and naive Bayesian models.
Resumo:
Background Few data on the relationship between temperature variability and childhood pneumonia are available. This study attempted to fill this knowledge gap. Methods A quasi-Poisson generalized linear regression model combined with a distributed lag nonlinear model was used to quantify the impacts of diurnal temperature range (DTR) and temperature change between two neighbouring days (TCN) on emergency department visits (EDVs) for childhood pneumonia in Brisbane, from 2001 to 2010, after controlling for possible confounders. Results An adverse impact of TCN on EDVs for childhood pneumonia was observed, and the magnitude of this impact increased from the first five years (2001–2005) to the second five years (2006–2010). Children aged 5–14 years, female children and Indigenous children were particularly vulnerable to TCN impact. However, there was no significant association between DTR and EDVs for childhood pneumonia. Conclusions As climate change progresses, the days with unstable weather pattern are likely to increase. Parents and caregivers of children should be aware of the high risk of pneumonia posed by big TCN and take precautionary measures to protect children, especially those with a history of respiratory diseases, from climate impacts.
Resumo:
This study aimed to explore the spatiotemporal patterns, geographic co-distribution, and socio-ecological drivers of childhood pneumonia and diarrhea in Queensland. A Bayesian conditional autoregressive model was used to quantify the impacts of socio-ecological factors on both childhood pneumonia and diarrhea at a postal area level. A distinct seasonality of childhood pneumonia and diarrhea was found. Childhood pneumonia and diarrhea mainly distributed in northwest of Queensland. Mount Isa was the high-risk cluster where childhood pneumonia and diarrhea co-distributed. Emergency department visits (EDVs) for pneumonia increased by 3% per 10-mm increase in monthly average rainfall, in wet seasons. In comparison, a 10-mm increase in monthly average rainfall may increase 4% of EDVs for diarrhea. Monthly average temperature was negatively associated with EDVs for childhood diarrhea, in wet seasons. Low socioeconomic index for areas (SEIFA) was associated with high EDVs for childhood pneumonia. Future pneumonia and diarrhea prevention and control measures in Queensland should focus more on Mount Isa.
Resumo:
Stormwater pollution is linked to stream ecosystem degradation. In predicting stormwater pollution, various types of modelling techniques are adopted. The accuracy of predictions provided by these models depends on the data quality, appropriate estimation of model parameters, and the validation undertaken. It is well understood that available water quality datasets in urban areas span only relatively short time scales unlike water quantity data, which limits the applicability of the developed models in engineering and ecological assessment of urban waterways. This paper presents the application of leave-one-out (LOO) and Monte Carlo cross validation (MCCV) procedures in a Monte Carlo framework for the validation and estimation of uncertainty associated with pollutant wash-off when models are developed using a limited dataset. It was found that the application of MCCV is likely to result in a more realistic measure of model coefficients than LOO. Most importantly, MCCV and LOO were found to be effective in model validation when dealing with a small sample size which hinders detailed model validation and can undermine the effectiveness of stormwater quality management strategies.
Resumo:
Business Process Management describes a holistic management approach for the systematic design, modeling, execution, validation, monitoring and improvement of organizational business processes. Traditionally, most attention within this community has been given to control-flow aspects, i.e., the ordering and sequencing of business activities, oftentimes in isolation with regards to the context in which these activities occur. In this paper, we propose an approach that allows executable process models to be integrated with Geographic Information Systems. This approach enables process models to take geospatial and other geographic aspects into account in an explicit manner both during the modeling phase and the execution phase. We contribute a structured modeling methodology, based on the well-known Business Process Model and Notation standard, which is formalized by means of a mapping to executable Colored Petri nets. We illustrate the feasibility of our approach by means of a sustainability-focused case example of a process with important ecological concerns.
Resumo:
There is a concern that high densities of elephants in southern Africa could lead to the overall reduction of other forms of biodiversity. We present a grid-based model of elephant-savanna dynamics, which differs from previous elephant-vegetation models by accounting for woody plant demographics, tree-grass interactions, stochastic environmental variables (fire and rainfall), and spatial contagion of fire and tree recruitment. The model projects changes in height structure and spatial pattern of trees over periods of centuries. The vegetation component of the model produces long-term tree-grass coexistence, and the emergent fire frequencies match those reported for southern African savannas. Including elephants in the savanna model had the expected effect of reducing woody plant cover, mainly via increased adult tree mortality, although at an elephant density of 1.0 elephant/km2, woody plants still persisted for over a century. We tested three different scenarios in addition to our default assumptions. (1) Reducing mortality of adult trees after elephant use, mimicking a more browsing-tolerant tree species, mitigated the detrimental effect of elephants on the woody population. (2) Coupling germination success (increased seedling recruitment) to elephant browsing further increased tree persistence, and (3) a faster growing woody component allowed some woody plant persistence for at least a century at a density of 3 elephants/km2. Quantitative models of the kind presented here provide a valuable tool for exploring the consequences of management decisions involving the manipulation of elephant population densities. © 2005 by the Ecological Society of America.
Resumo:
A spatially explicit multi-competitor coexistence model was developed for meta-populations of prawns (shrimp) occupying habitat patches across the Great Barrier Reef, where dispersal was localised and dispersal rates varied between species. Prawns were modelled as individuals moving to and from patches or cells according to pre-set decision rules. The landscape was simulated as a matrix of cells with each cell having a spatially explicit survival index for each species. Mixed species prawn assemblages moved over this simplified spatially explicit landscape. A low level of chronic random environmental disturbance was assumed (cyclone and tropical storm damage) with additional acute spatially confined disturbance due to commercial trawling, modelled as an increase in mortality affecting inter-specific competition. The general form of the results was for increased disturbance to favour good-colonising "generalist" species at the expense of good-competitor "specialists". Increasing fishing mortality (local patch extinctions) combined with poor colonising ability resulted in low equilibrium abundance for even the best competitor, while in the same circumstances the poorest competitor but best coloniser could have the highest equilibrium abundance. This mimics the switch from high-value prawn species to lower-value prawn species as trawl effort increases, reflected in historic catch and effort logbook data and reported anecdotaly from the north Queensland trawl fleet. To match the observed distribution and behaviour of prawn assemblages, a combination inter-species competition, a spatially explicit landscape, and a defined pattern of disturbance (trawling) was required. Modelling this combination could simulate not only general trends in spatial distribution of each of prawn species but also localised concentrations observed in the survey data
Resumo:
Diel activity patterns of tropical fish assemblages in turbid, mangrove-dominated estuaries remain largely undocumented, leading to uncertainty about ecological processes in these systems. To capture active fishes by day and night, gill nets were set perpendicular to mangrove shorelines, in six northeastern Australian estuaries during 13 bimonthly trips. Fish were sampled with eight large mesh (102-151 mm) nets, set for 6 hrs (1500-2100), and checked hourly (1146 day, 635 dusk, 872 night checks). Four smaller mesh (19-51 mm) nets were also set for 1 hr before and after sunset (77 day, 78 night checks). Of 157 total species, 22 were netted exclusively before sunset and 47 exclusively after sunset. All of the top 26 species were present both day and night, but of these, 46% were primarily nocturnal (diel index > 0.65). An average of 77.2 fish hr−1 were netted by day vs 171.4 by night. Within the 400 km coastal region, assemblages differed between two northern wave-dominated (WD) estuaries and four southern tide-dominated ('I'D) estuaries. In all six estuaries Lates calcarifer (Bloch, 1790) dominated night assemblages. In 'I'D estuaries, night assemblages were also dominated by Thryssa hamiltoni Gray, 1835 and Eleutheronema tetradactylum (Shaw, 1804); while in WD estuaries Herklotsichthys castelnaui (Ogilby, 1897), Leiognathus equulus (Forsskål, 1775), and Megalops cyprinoids (Broussonet, 1782) were dominant at night. Nocturnal species included planktivores and carnivores, while daytime assemblages were dominated by detritivores (Mugillidae). Higher night catch rates are attributed to increased activity by mobile fishes moving from mangrove to adjacent habitats to forage, especially immediately post-sunset. Although day-night diets and forage resources have yet to be compared in mangrove systems, previously unrecognized trophic relationships involving variation in diel activity among important fishery species (Centropomidae, polynemidae, Carangidae) and their prey may be key ecological processes in these tropical mangrove estuaries. A proposed hypothesis explaining diel variation in mangrove fish assemblages of tropical estuaries is presented through a conceptual model.
Resumo:
This paper describes the employment of two experienced graziers as consultants to apply and evaluate a model for calculating 'safe' long-term grazing capacities of individual properties. The model was based on ecological principles and entailed estimates of average annual forage grown (kglha) on the different land systems on each property and the calculation of the number of livestock (dry sheep equivalents, DSE) required to 'safely' utilise this forage. The grazier consultants applied and evaluated the 'safe' grazing capacity model on 20 properties of their choosing. For evaluation, model results were compared with; (a) the Department of Lands rated carrying capacities for those properties and (b) the grazing capacity assessed independently by the owners of those properties. For the 20 properties, the average 'safe' grazing capacity calculated by the model (21.0 DSE/kmZ) was 8% lighter than the average of the owner assessed capacities (22.7 DSE/kmZ), which in tum was 37% lighter than the average of the pre-1989 Department of Lands rated carrying capacity (31.0 DSE/kmZ). The grazing land management and administrative implications of these results and the role graziers played as consultants are discussed.