604 resultados para Earthquakes.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a growing awareness worldwide of the significance of social media to communication in times of both natural and human-created disasters and crises. While the media have long been used as a means of broadcasting messages to communities in times of crisis – bushfires, floods, earthquakes etc. – the significance of social media in enabling many-to-many communication through ubiquitous networked computing and mobile media devices is becoming increasingly important in the fields of disaster and emergency management. This paper undertakes an analysis of the uses made of social media during two recent natural disasters: the January 2011 floods in Brisbane and South-East Queensland in Australia, and the February 2011 earthquake in Christchurch, New Zealand. It is part of a wider project being undertaken by a research team based at the Queensland University of Technology in Brisbane, Australia, that is working with the Queensland Department of Community Safety (DCS) and the EIDOS Institute, and funded by the Australian Research Council (ARC) through its Linkages program. The project combines large-scale, quantitative social media tracking and analysis techniques with qualitative cultural analysis of communication efforts by citizens and officials, to enable both emergency management authorities and news media organisations to develop, implement, and evaluate new social media strategies for emergency communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While scientists are still debating the level of climate change impact to new weather patterns, there have been some devastating natural disasters worldwide in the last decade. From cyclones to earthquakes and from Tsunamis to landslides, these disasters occur with formidable forces and crushing effects. As one of the most important arrangements to erase the negative influence of natural disasters and help with the recovery and redevelopment of the hit area, reconstruction is of utmost importance in light of sustainable objectives. However, current reconstruction practice confronts quite a lot of criticisms for focusing on providing short-term necessities. How to conduct the post disaster reconstruction in a long-term perspective and achieve sustainable development is thereby a highlight for industry practice and research. This paper introduced an on-going research project which is aimed at establishing an operational framework for improving sustainability performance of post disaster reconstruction by identifying critical sustainable factors and exploring their internal relationships. The research reported in this paper is part of the project. After a comprehensive literature review, 17 potential critical sustainability factors for post disaster reconstruction were identified. Preliminary examination and discussion of the factors was conducted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The therapeutic value of play can be shown in spontaneous play situations following children’s experiences of traumatic events. Following the events of the Christchurch earthquakes in New Zealand in 2010 and 2011, an investigation was conducted of how children used the earthquake event as a catalyst in pretend play with peers and in discussions with teachers. Supporting children’s well-being is a focus area in New Zealand early childhood education as it is a strand of the national curriculum, Te Whāriki (Ministry of Education [MoE], 1996). In this article, children are observed engaging in pretend play episodes and with Learning Story books to explore personal reflections of the earthquake, prompting the children to make reference to things being ‘broken’ and needing 'fixing.' Analysis shows how the content of the pretend play experiences helped the children to come to terms with their experiences. Affording children time and interactional opportunities to play out and discuss traumatic experiences contributes to the psychological well-being of participants following a traumatic event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article examines important insurance and trust law issues that may confront trustees charged with the governance and protection of unique properties with broad community and heritage significance. Often trustee roles are assumed by community leaders without full appreciation of the potential difficulties and consequences when unforeseen circumstances arise. Three recent New Zealand court decisions in relation to the deconstruction and repair of the Christchurch Cathedral and to the interim construction of a transitional"cardboard Cathedral" highlight how difficult - and legally exposed - the role of trustee can be. The Cathedral cases go to the heart of defining the core purpose for which a Trust is created and examine the scope of discretion in fulfilling this charge its Trustees carry. Arising in the wake of the devastating Christchurch earthquakes, the Cathedral's Trustees were called upon to consider the best directions forward for a criplled and dangerous building subject to potential demolition, the wellbeing of the Cathedral's direct community, and the broader heritage and identity factors that this 'heart' of Christchurch represented. In the context of a seemingly grossly underinsured material damage cover - and faced with broader losses across the Diocese's holdings - the Trustees found that their sense of mission failed to gel with that of a community-based heritage buildings preservation trust. The High Court had to consider how monies received under the material damage policy could be applied by the Trustee in deconstructing, reinstating or repairing the Cathedral and if monies could be partly deployed to create an interim solution in the former of a transitional cathedral - all this in the context of the site-specific purpose of the Cathedral trust. The cases emphasise further the need to assess professionally the nature and quantum of cover effected to protect against various risks. In addition, in the case of historic or unusual buildings extra care must be exercised to take account additional costs associated with reinstatement so as to substantially retain the character and intrinsic value of such properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Governments, authorities, and organisations dedicate significant resources to encourage communities to prepare for and respond to natural hazards such as cyclones, earthquakes, floods, and bushfires. However, recent events, media attention, and ongoing academic research continue to highlight cases of non-compliance including swift water rescues. Individuals who fail to comply with instructions issued during natural hazards significantly impede the emergency response because they divert resources to compliance-enforcement and risk the lives of emergency service workers who may be required to assist them. An initial investigation of the field suggests several assumptions or practices that influence emergency management policy, communication strategy, and community behaviours during natural hazards: 1) that community members will comply with instructions issued by governments and agencies that represent the most authoritative voice, 2) that communication campaigns are shaped by intuition rather than evidence-based approaches (Wood et al., 2012), and 3) that emergency communication is linear and directional. This extended abstract represents the first stage of a collaborative research project that integrates industry and cross-disciplinary perspectives to provide evidence-based approaches for emergency and risk communication during the response and recovery phases of a natural hazard. Specifically, this abstract focuses on the approach taken and key elements that will form the development of a typology of compliance-gaining messages during the response phase of natural hazards, which will be the focus of the conference presentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes research conducted for the Japanese government in the wake of the magnitude 9.0 earthquake and tsunami that struck eastern Japan on March 11, 2011. In this study, material stock analysis (MSA) is used to examine the losses of building and infrastructure materials after this disaster. Estimates of the magnitude of material stock that has lost its social function as a result of a disaster can indicate the quantities required for reconstruction, help garner a better understanding of the volumes of waste flows generated by that disaster, and also help in the course of policy deliberations in the recovery of disaster-stricken areas. Calculations of the lost building and road materials in the five prefectures most affected were undertaken. Analysis in this study is based on the use of geographical information systems (GIS) databases and statistics; it aims to (1) describe in spatial terms what construction materials were lost, (2) estimate the amount of infrastructure material needed to rehabilitate disaster areas, and (3) indicate the amount of lost material stock that should be taken into consideration during government policy deliberations. Our analysis concludes that the material stock losses of buildings and road infrastructure are 31.8 and 2.1 million tonnes, respectively. This research approach and the use of spatial MSA can be useful for urban planners and may also convey more appropriate information about disposal based on the work of municipalities in disaster-afflicted areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of developing effective disaster management strategies has significantly grown as the world continues to be confronted with unprecedented disastrous events. Factors such as climate instability, recent urbanization along with rapid population growth in many cities around the world have unwittingly exacerbated the risks of potential disasters, leaving a large number of people and infrastructure exposed to new forms of threats from natural disasters such as flooding, cyclones, and earthquakes. With disasters on the rise, effective recovery planning of the built environment is becoming imperative as it is not only closely related to the well-being and essential functioning of society, but it also requires significant financial commitment. In the built environment context, post-disaster reconstruction focuses essentially on the repair and reconstruction of physical infrastructures. The reconstruction and rehabilitation efforts are generally performed in the form of collaborative partnerships that involve multiple organisations, enabling the restoration of interdependencies that exist between infrastructure systems such as energy, water (including wastewater), transport, and telecommunication systems. These interdependencies are major determinants of vulnerabilities and risks encountered by critical infrastructures and therefore have significant implications for post-disaster recovery. When disrupted by natural disasters, such interdependencies have the potential to promote the propagation of failures between critical infrastructures at various levels, and thus can have dire consequences on reconstruction activities. This paper outlines the results of a pilot study on how elements of infrastructure interdependencies have the potential to impede the post-disaster recovery effort. Using a set of unstructured interview questionnaires, plausible arguments provided by seven respondents revealed that during post-disaster recovery, critical infrastructures are mutually dependent on each other’s uninterrupted availability, both physically and through a host of information and communication technologies. Major disruption to their physical and cyber interdependencies could lead to cascading failures, which could delay the recovery effort. Thus, the existing interrelationship between critical infrastructures requires that the entire interconnected network be considered when managing reconstruction activities during the post-disaster recovery period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nepal, as a consequence of its geographical location and changing climate, faces frequent threats of natural disasters. According to the World Bank’s 2005 Natural Disasters Hotspots Report, Nepal is ranked the 11th most vulnerable country to earthquake and 30th to flood risk. Geo-Hazards International (2011) has classified Kathmandu as one of the world’s most vulnerable cities to earthquakes. In the last four decades more than 32,000 people in Nepal have lost their lives and annual monetary loss is estimated at more than 15 million (US) dollars. This review identifies gaps in knowledge, and progress towards implementation of the Post Hyogo Framework of Action. Nepal has identified priority areas: community resilience, sustainable development and climate change induced disaster risk reduction. However, one gap between policy and action lies in the ability of Nepal to act effectively in accordance with an appropriate framework for media activities. Supporting media agencies include the Press Council, Federation of Nepalese Journalists, Nepal Television, Radio Nepal and Telecommunications Authority and community based organizations. The challenge lies in further strengthening traditional and new media to undertake systematic work supported by government bodies and the National Risk Reduction Consortium (NRRC). Within this context, the ideal role for media is one that is proactive where journalists pay attention to a range of appropriate angles or frames when preparing and disseminating information. It is important to develop policy for effective information collection, sharing and dissemination in collaboration with Telecommunication, Media and Journalists. The aim of this paper is to describe the developments in disaster management in Nepal and their implications for media management. This study provides lessons for government, community and the media to help improve the framing of disaster messages. Significantly, the research highlights the prominence that should be given to flood, landslides, lightning and earthquakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ninety-two strong-motion earthquake records from the California region, U.S.A., have been statistically studied using principal component analysis in terms of twelve important standardized strong-motion characteristics. The first two principal components account for about 57 per cent of the total variance. Based on these two components the earthquake records are classified into nine groups in a two-dimensional principal component plane. Also a unidimensional engineering rating scale is proposed. The procedure can be used as an objective approach for classifying and rating future earthquakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents a method for the evaluation of external stability of reinforced soil walls subjected to earthquakes in the framework of the pseudo-dynamic method. The seismic reliability of the wall is evaluated by considering the different possible failure modes such as sliding along the base, overturning about the toe point of the wall, bearing capacity and the eccentricity of the resultant force. The analysis is performed considering properties of the reinforced backfill, foundation soil below the base of the wall, length of the geosynthetic reinforcement and characteristics of earthquake ground motions such as shear wave and primary wave velocity as random variables. The optimum length of reinforcement needed to maintain stability against four modes of failure by targeting various component reliability indices is obtained. Differences between pseudo-static and pseudo-dynamic methods are clearly highlighted in the paper. A complete analysis of pseudo-static and pseudo-dynamic methodologies shows that the pseudodynamic method results in realistic design values for the length of geosynthetic reinforcement under earthquake conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the lack of proper constraints in understanding earthquake mechanisms in the cratonic interiors and the general absence of good quality database, here we reassess the seismic hazard in the province of Kerala, a part of the aEuro cent stable continental interioraEuro cent, based on an improved historical and instrumental database. The temporal pattern of the current seismicity suggests that > 60% of the microtremors in Kerala occurs with a time lag after the peak rainfall, indicating that hydroseismicity may be a plausible model to explain the low-level seismicity in this region. Further, an increment in overall seismicity rate in the region in the recent years is explained as due to increased anthropogenic activities, which includes changes in hydrological pathways as a consequence of rapid landscape changes. Our analyses of the historical database eliminate a few events that are ascribed to this region; this exercise has also led to identification of a few events, not previously noted. The improved historical database essentially suggests that the central midland region is more prone to seismic activity compared to other parts of Kerala. This region appears to have generated larger number of significant earthquakes; the most prominent being the multiple events (doublets) of 1856 and 1953, whose magnitudes are comparable to that of the 2000/2001 (central Kerala) events. Occurrences of these historical events and the recent earthquakes, and the local geology indicative of pervasive faulting as shown by widely distributed pseudotachylite veins suggest that the NNW-SSE trending faults in central midland Kerala may host discrete potentially active sources that may be capable of generating light to moderate size earthquakes. The frequency of earthquakes in central Kerala evident from the historical database requires that the seismic codes stipulated for this region are made mandatory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work an attempt has been made to evaluate the seismic hazard of South India (8.0 degrees N-20 degrees N; 72 degrees E-88 degrees E) based on the probabilistic seismic hazard analysis (PSHA). The earthquake data obtained from different sources were declustered to remove the dependent events. A total of 598 earthquakes of moment magnitude 4 and above were obtained from the study area after declustering, and were considered for further hazard analysis. The seismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones in the study area which are associated with earthquakes of magnitude 4 and above. For assessing theseismic hazard, the study area was divided into small grids of size 0.1 degrees x0.1 degrees, and the hazard parameters were calculated at the centre of each of these grid cells by considering all the seismic sources with in a radius of 300 km. Rock level peak horizontal acceleration (PHA) and spectral acceleration (SA) values at 1 corresponding to 10% and 2% probability of exceedance in 50 years have been calculated for all the grid points. The contour maps showing the spatial variation of these values are presented here. Uniform hazard response spectrum (UHRS) at rock level for 5% damping and 10% and 2% probability of exceedance in 50 years were also developed for all the grid points. The peak ground acceleration (PGA) at surface level was calculated for the entire South India for four different site classes. These values can be used to find the PGA values at any site in South India based on site class at that location. Thus, this method can be viewed as a simplified method to evaluate the PGA values at any site in the study area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper focuses on the reliability-based design optimization of gravity wall bridge abutments when subjected to active condition during earthquakes. An analytical study considering the effect of uncertainties in the seismic analysis of bridge abutments is presented. Planar failure surface has been considered in conjunction with the pseudostatic limit equilibrium method for the calculation of the seismic active earth pressure. Analysis is conducted to evaluate the external stability of bridge abutments when subjected to earthquake loads. Reliability analysis is used to estimate the probability of failure in three modes of failure viz. sliding failure of the wall on its base, overturning failure about its toe (or eccentricity failure of the resultant force) and bearing failure of foundation soil below the base of wall. The properties of backfill and foundation soil below the base of abutment are treated as random variables. In addition, the uncertainties associated with characteristics of earthquake ground motions such as horizontal seismic acceleration and shear wave velocity propagating through backfill soil are considered. The optimum proportions of the abutment needed to maintain the stability are obtained against three modes of failure by targeting various component and system reliability indices. Studies have also been made to study the influence of various parameters on the seismic stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetorheological dampers are intrinsically nonlinear devices, which make the modeling and design of a suitable control algorithm an interesting and challenging task. To evaluate the potential of magnetorheological (MR) dampers in control applications and to take full advantages of its unique features, a mathematical model to accurately reproduce its dynamic behavior has to be developed and then a proper control strategy has to be taken that is implementable and can fully utilize their capabilities as a semi-active control device. The present paper focuses on both the aspects. First, the paper reports the testing of a magnetorheological damper with an universal testing machine, for a set of frequency, amplitude, and current. A modified Bouc-Wen model considering the amplitude and input current dependence of the damper parameters has been proposed. It has been shown that the damper response can be satisfactorily predicted with this model. Second, a backstepping based nonlinear current monitoring of magnetorheological dampers for semi-active control of structures under earthquakes has been developed. It provides a stable nonlinear magnetorheological damper current monitoring directly based on system feedback such that current change in magnetorheological damper is gradual. Unlike other MR damper control techniques available in literature, the main advantage of the proposed technique lies in its current input prediction directly based on system feedback and smooth update of input current. Furthermore, while developing the proposed semi-active algorithm, the dynamics of the supplied and commanded current to the damper has been considered. The efficiency of the proposed technique has been shown taking a base isolated three story building under a set of seismic excitation. Comparison with widely used clipped-optimal strategy has also been shown.