899 resultados para EXTREME-ULTRAVIOLET
Resumo:
Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.
Resumo:
The QUT Extreme Science and Engineering program provides free hands-on workshops to schools, presented by scientists and engineers to students from prep to year 12 in their own classrooms. The workshops are tied to the school curriculum and give students access to professional quality instruments, helping to stimulate their interest in science and engineering, with the aim of generating a greater take up of STEM related subjects in the senior high school years. In addition to engaging students in activities, workshop presenters provide role models of both genders, helping to breakdown preconceived ideas of the type of person who becomes a scientist or engineer and demystifying the university experience. The Extreme Science and Engineering vans have been running for 10 years and as such demonstrate a sustainable and reproducible model for schools engagement. With funding provided through QUT’s Widening Participation Equity initiative (HEPPP funded) the vans which averaged 120 school visits each year has increased to 150+ visits in 2010. Additionally 100+ workshops (hands-on and career focused) have been presented to students from low socio-economic status schools, on the three QUT campuses in 2011. While this is designed as a long-term initiative the short term results have been very promising, with 3000 students attending the workshops in the first six months and teacher and students feedback has been overwhelmingly positive.
Resumo:
ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse
A tan in a test tube -in vitro models for investigating ultraviolet radiation-induced damage in skin
Resumo:
Presently, global rates of skin cancers induced by ultraviolet radiation (UVR) exposure are on the rise. In view of this, current knowledge gaps in the biology of photocarcinogenesis and skin cancer progression urgently need to be addressed. One factor that has limited skin cancer research has been the need for a reproducible and physiologically-relevant model able to represent the complexity of human skin. This review outlines the main currently-used in vitro models of UVR-induced skin damage. This includes the use of conventional two-dimensional cell culture techniques and the major animal models that have been employed in photobiology and photocarcinogenesis research. Additionally, the progression towards the use of cultured skin explants and tissue-engineered skin constructs, and their utility as models of native skin's responses to UVR are described. The inherent advantages and disadvantages of these in vitro systems are also discussed.
Resumo:
Folate is essential for human health in the prevention of megaloblastic anaemia and neural tube birth defects as well as roles in cardiovascular disease and cancer. Therefore research into environmental factors that may impact folate status, such as solar ultraviolet radiation, is of great health significance. In vitro studies have shown that ultraviolet (UV) radiation can degrade folate and folic acid in human blood and this has been confirmed in several human studies. Despite these findings, there is a dearth of epidemiological research into investigating the relationship between folate status and the links to solar UV exposure.
Resumo:
Background: Extreme temperatures are associated with cardiovascular disease (CVD) deaths. Previous studies have investigated the relative CVD mortality risk of temperature, but this risk is heavily influenced by deaths in frail elderly persons. To better estimate the burden of extreme temperatures we estimated their effects on years of life lost due to CVD. Methods and Results: The data were daily observations on weather and CVD mortality for Brisbane, Australia between 1996 and 2004. We estimated the association between daily mean temperature and years of life lost due to CVD, after adjusting for trend, season, day of the week, and humidity. To examine the non-linear and delayed effects of temperature, a distributed lag non-linear model was used. The model’s residuals were examined to investigate if there were any added effects due to cold spells and heat waves. The exposure-response curve between temperature and years of life lost was U-shaped, with the lowest years of life lost at 24 °C. The curve had a sharper rise at extremes of heat than of cold. The effect of cold peaked two days after exposure, whereas the greatest effect of heat occurred on the day of exposure. There were significantly added effects of heat waves on years of life lost. Conclusions: Increased years of life lost due to CVD are associated with both cold and hot temperatures. Research on specific interventions is needed to reduce temperature-related years of life lost from CVD deaths.
Resumo:
The inner city Brisbane suburbs of the West End peninsula are poised for redevelopment. Located within walking distance to CBD workplaces, home to Queensland’s highest value cultural precinct, and high quality riverside parklands, there is currently a once-in-a-lifetime opportunity to redevelop parts of the suburb to create a truly urban neighbourhood. According to a local community association, local residents agree and embrace the concept of high-density living, but are opposed to the high-rise urban form (12 storeys) advocated by the City’s planning authority (BCC, 2011) and would prefer to see medium-rise (5-8 storeys) medium-density built form. Brisbane experienced a major flood event which inundated the peninsula suburbs of West End in summer January 2011. The vulnerability of taller buildings to the vagaries of climate and more extreme weather events and their reliance on main electricity was exposed when power outages immediately before, during and after the flood disaster seriously limited occupants’ access and egress when elevators were disabled. Not all buildings were flooded but dwellings quickly became unliveable due to disabled air-conditioning. Some tall buildings remained uninhabitable for several weeks after the event. This paper describes an innovative design research method applied to the complex problem of resilient, sustainable neighbourhood form in subtropical cities, in which a thorough comparative analysis of a range of multiple-dwelling types has revealed the impact that government policy regarding design of the physical environment has on a community’s resilience. The outcomes advocate the role of climate-responsive design in averting the rising human capital and financial costs of natural disasters and climate change.
Resumo:
Purpose: There are some limited reports, based on questionnaire data, which suggest that outdoor activity decreases the risk of myopia in children and may offset the myopia risk associated with prolonged near work. The aim of this study was to explore the relationship between near work, indoor illumination, daily sunlight and ultraviolet (UV) exposure in emmetropic and myopic University students, given that University students perform significant amounts of near work and as a group have a high prevalence of myopia. Methods: Participants were 35 students, aged 17 to 25 years who were classified as being emmetropic (n=13), or having stable (n=12) or progressing myopia (n=10). During waking hours on three separate days participants wore a light sensor data logger (HOBO) and a polysulphone UV dosimeter; these devices measured daily illuminance and accumulative UV exposure respectively; participants also completed a daily activity log. Results: No significant between group differences were observed for average daily illuminance (p=0.732), number of hours per day spent in sunlight (p=0.266), outdoor shade (p=0.726), bright indoor/dim outdoor light (p=0.574) or dim room illumination (p=0.484). Daily UV exposure was significantly different across the groups (p=0.003); with stable myopes experiencing the greatest UV exposure (versus emmetropes p=0.002; versus progressing myopes p=0.004). Conclusions: The current literature suggests there is a link between myopia protection and spending time outdoors in children. Our data provides some evidence of this relationship in young adults and highlights the need for larger studies to further investigate this relationship longitudinally.
Resumo:
Extreme sports are traditionally explored from a risk-taking perspective which often assumes that participants do not experience fear. In this paper we explore participants’ experience of fear associated with participation in extreme sports. An interpretive phenomenological method was used with 15 participants. Four themes emerged: experience of fear, relationship to fear, management of fear, and fear and self transformation. Participant’s experience of extreme sports was revealed in terms of intense fear but this fear was integrated and experienced as a potentially meaningful and constructive event in their lives. The findings have implications for understanding fear as a potentially transformative process.
Resumo:
OBJECTIVES: Ecological studies have suggested an inverse relationship between latitude and risks of some cancers. However, associations between solar ultraviolet radiation (UVR) exposure and esophageal cancer risk have not been fully explored. We therefore investigated the association between nevi, freckles, and measures of ambient UVR over the life-course with risks of esophageal cancers. METHODS: We compared estimated lifetime residential ambient UVR among Australian patients with esophageal cancer (330 esophageal adenocarcinoma (EAC), 386 esophago-gastric junction adenocarcinoma (EGJAC), and 279 esophageal squamous cell carcinoma (ESCC)), and 1471 population controls. We asked people where they had lived at different periods of their life, and assigned ambient UVR to each location based on measurements from NASA's Total Ozone Mapping Spectrometer database. Freckling and nevus burden were self-reported. We used multivariable logistic regression models to estimate the magnitude of associations between phenotype, ambient UVR, and esophageal cancer risk. RESULTS: Compared with population controls, patients with EAC and EGJAC were less likely to have high levels of estimated cumulative lifetime ambient UVR (EAC odds ratio (OR) 0.59, 95% confidence interval (CI) 0.35-0.99, EGJAC OR 0.55, 0.34-0.90). We found no association between UVR and risk of ESCC (OR 0.91, 0.51-1.64). The associations were independent of age, sex, body mass index, education, state of recruitment, frequency of reflux, smoking status, alcohol consumption, and H. pylori serostatus. Cases with EAC were also significantly less likely to report high levels of nevi than controls. CONCLUSIONS: These data show an inverse association between ambient solar UVR at residential locations and risk of EAC and EGJAC, but not ESCC.