989 resultados para EXCHANGE CHROMATOGRAPHY
Resumo:
Crotamine is a strong basic polypeptide from Crotalus durissus terrificus (Cdt) venom composed of 42 amino acid residues tightly bound by three disulfide bonds. It causes skeletal muscle spasms leading to spastic paralysis of hind limbs in mice. The objective of this paper was to study the distribution of crotamine injected intraperitoneally (ip) in mice. Crotamine was purified from Cdt venom by gel filtration, followed by ion exchange chromatography, using a fast-performance liquid chromatography (FPLC) system. Purified crotamine was irradiated at 2 kGy in order to detoxify. Both native and irradiated proteins were labeled with 125, using chloramine T method, and separated by get filtration. Male Swiss mice were injected ip with 0.1 mL (2 x 10(6) cpm/mouse) of I-125 native or irradiated crotamine. At various time intervals, the animals were killed by ether inhalation and blood, spleen, liver, kidneys, brain, lungs, heart, and skeletal muscle were collected in order to determine the radioactivity content. The highest levels of radioactivity were found in the kidneys and the liver, and the lowest in the brain. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A lectin-like protein from the seeds of Acacia farnesiana was isolated from the albumin fraction, characterized, and sequenced by tandem mass spectrometry. The albumin fraction was extracted with 0.5 M NaCl, and the lectin-like protein of A. farnesiana (AFAL) was purified by ion-exchange chromatography (Mono-Q) followed by chromatofocusing. AFAL agglutinated rabbit erythrocytes and did not agglutinate human ABO erythrocytes either native or treated with proteolytic enzymes. In sodium dodecyl sulfate gel electrophoresis under reducing and nonreducing conditions, AFAL separated into two bands with a subunit molecular mass of 35 and 50 kDa. The homogeneity of purified protein was confirmed by chromatofocusing with a pI=4.0+/-0.5. Molecular exclusion chromatography confirmed time-dependent oligomerization in AFAL, in accordance with mass spectrometry analysis, which confers an alteration in AFAL affinity for chitin. The protein sequence was obtained by a liquid chromatography quadrupole time-of-flight experiment and showed that AFAL has 68% and 63% sequence similarity with lectins of Phaseolus vulgaris and Dolichos biflorus, respectively.
Resumo:
Lysine-ketoglutaratc reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses L-lysine and α-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and thereafter decreasing as the kernel approaches maturity. The enzyme was extracted from the developing maize endosperm and partially purified by ammonium-sulfate precipitation, anion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Blue-Sepharose CL-6B. The preparation obtained from affinity chromatography was enriched 275-fold and had a specific activity of 411 nanomoles per minute per milligram protein. The native and denaturated enzyme is a 140 kilodalton protein as determined by polyacrylamide gel electrophoresis. The enzyme showed specificity for its substrates and was not inhibited by either aminoethyl-cysteine or glutamate. Steady-state product-inhibition studies revealed that saccharopine was a noncompetitive inhibitor with respect to α-ketoglutarate and a competitive inhibitor with respect to lysine. This is suggestive of a rapid equilibriumordered binding mechanism with a binding order of lysine, α-ketoglutarate, NADPH. The enzyme activity was investigated in two maize inbred lines with homozygous normal and opaque-2 endosperms. The pattern of lysine-ketoglutarate reductase activity is coordinated with the rate of zein accumulation during endosperm development. A coordinated regulation of enzyme activity and zein accumulation was observed in the opaque-2 endosperm as the activity and zein levels were two to three times lower than in the normal endosperm. Enzyme extracted from L1038 normal and opaque-2 20 days after pollination was partially purified by DEAE-cellulose chromatography. Both genotypes showed a similar elution pattern with a single activity peak eluted at approximately 0.2 molar KCL. The molecular weight and physical properties of the normal and opaque-2 enzymes were essentially the same. We suggest that the Opaque-2 gene, which is a transactivator of the 22 kilodalton zein genes, may be involved in the regulation of the lysine-ketoglutarate reductase gene in maize endosperm. In addition, the decreased reductase activity caused by the opaque-2 mutation may explain, at least in part, the elevated concentration of lysine found in the opaque-2 endosperm.
Resumo:
The neotropical wasp Polybia paulista is very aggressive and endemic in south-east Brazil, where it frequently causes stinging accidents. By using gel filtration on Sephadex G-200, followed by ion-exchange chromatography on DEAE-Cellulose under a pH gradient, a group of four toxins (designated as polybitoxins-I, II, lII and IV) presenting phospholipase A2 (PLA2) activities was purified. These toxins are dimeric with mol. wts ranging from 115,000 to 132,000 and formed by different subunits. The four toxins contain very high sugar contents attached to their molecules (22-43% w/w) and presented different values of pH optimum from 7.8 to 9.0; when dissociated, only residual catalytic activities were maintained. The catalytic activities of polybitoxins (from 18 to 771 μmoles/mg per minute) are lower than that of PLA2 from Apis mellifera venom and hornetin from Vespa basalis. The polybitoxins presented a non-linear steady-state kinetic behavior for the hydrolysis of phosphatidylcholine at pH 7.9, compatible with the negative co- operativity phenomena. All of the polybitoxins were very potent direct hemolysins, especially the polybitoxins-III and IV, which are as potent as the lethal toxin from V. basalis and hornetin from Vespa flavitarsus, respectively; polybitoxin-IV presented hemolytic action 20 times higher than that of PLA2 from A. mellifera, 17 times higher than that of neutral PLA2 from Naja nigricolis and about 37 times higher than that of cardiotoxin from Naja naja atra venom.
Resumo:
β-Glucosidase from the fungus Thermoascus aurantiacus grown on semi-solid fermentation medium (using ground corncob as substrate) was partially purified in 5 steps-ultrafiltration, ethanol precipitation, gel filtration and 2 anion exchange chromatography runs, and characterized. After the first anion exchange chromatography, β-glucosidase activity was eluted in 3 peaks (Gl-1, Gl-2, Gl-3). Only the Gl-2 and Gl-3 fractions were adsorbed on the gel matrix. Gl-2 and Gl-3 exhibited optimum pH at 4.5 and 4.0, respectively. The temperature optimum of both glucosidases was at 75-80°C. The pH stability of Gl-2 (4.0-9.0) was higher than Gl-3 (5.5-8.5); both enzyme activities showed similar patterns of thermostability. Under conditions of denaturing gel chromatography the molar mass of Gl-2 and Gl-3 was 175 and 157 kDa, respectively. Using 4-nitrophenyl β-D-glucopyranoside as substrate, Km values of 1.17 ± 0.35 and 1.38 ± 0.86 mmol/L were determined for Gl-2 and Gl-3, respectively. Both enzymes were inhibited by Ag+ and stimulated by Ca2+.
Resumo:
Studies were carried out to natural papain inhibitor from papaya latex. Fresh latex from green fruits of Carica papaya was collected and immediately transported in ice bath to the lab, from which three fractions with inhibitor effect of esterase papain activity were isolated by latex dialysis, Sephadex G-25 gel filtration and ionic exchange chromatography in SP-Sephadex C-25. The isolated fractions, identified as inhibitors I and II, showed a negative reaction with ninhydrin; however, the fraction identified as P-III showed positive reaction with ninhydrin. Kinetics data showed non-competitive inhibition (inhibitor I) and uncompetitive (inhibitors II and P -III).
Resumo:
Human platelet-derived growth factor (PDGF) was purified from lysates of clinically outdated human platelets by ionic exchange chromatography in CM-Sepharose. The eluated fraction was submitted to the Immunoblot/Slot Blot assay using anti-PDGF-AA and anti-PDGF-BB polyclonal antibodies and was evaluated as to its biological activity through the test of [H 3]-thymidine incorporation in NIH/3T3 cell line fibroblasts in culture. The Immunoblot/Slot Blot assay using anti-PDGF-AA and anti-PDGF-BB antibodies proved the presence of the PDGF in chromatographic cationic fraction. The comparison of biological activities between fiblobrast stimulation assay using recombinant PDGF-AB and partially purified PDGF was demonstrated in 165.796 and 157.567 cpm, respectively. This result, proved the potent mitogenic effect of partially purified PDGF and consequently their evidence about the wound healing activity.
Resumo:
Laccases are glycoprotein polyphenol oxidases which are involved in fungal pathogenicity and they are also useful for biotechnological applications. The ligninolytic ascomycete, Botryosphaeria rhodina, has been studied as producer of exopolysaccharide and PPO-I and PPO-II laccases induced by veratryl alcohol. However, as the induced laccases have not been isolated, the aim of this study was to purify the enzyme and to identify the carbohydrates constituents of the glycosidic moiety. The fungus was cultivated on broth Vogel, 1% glucose and 30.4mM veratryl alcohol during 4.5 days at 28°C/180 rpm. The extracellular fluid showed high carbohydrate concentration and the stability of PPO-I laccase under conditions of refrigeration and freezing at 4°C-18°C over 40 days. The purification was developed by ultrafiltration using a NMWL 100 and 30 kDa membrane, gelfiltration on Sephadex G-100, and ion-exchange chromatography on DEAE-cellulose. The purified laccase was identified as a glycoprotein, weight molecular 113 kDa, consisting of 40% protein and 60% carbohydrate identified by HPAEC-PAD as fucose, galactose, mannose, glucose and glucosamine.
Resumo:
Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407 ± 15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed β(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-β-d-glucopyranose units in chitin. The full-length amino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 Å resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (βα) 8 barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182. © 2006 The Authors.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)