990 resultados para ERROR MATRIX


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider complexity penalization methods for model selection. These methods aim to choose a model to optimally trade off estimation and approximation errors by minimizing the sum of an empirical risk term and a complexity penalty. It is well known that if we use a bound on the maximal deviation between empirical and true risks as a complexity penalty, then the risk of our choice is no more than the approximation error plus twice the complexity penalty. There are many cases, however, where complexity penalties like this give loose upper bounds on the estimation error. In particular, if we choose a function from a suitably simple convex function class with a strictly convex loss function, then the estimation error (the difference between the risk of the empirical risk minimizer and the minimal risk in the class) approaches zero at a faster rate than the maximal deviation between empirical and true risks. In this paper, we address the question of whether it is possible to design a complexity penalized model selection method for these situations. We show that, provided the sequence of models is ordered by inclusion, in these cases we can use tight upper bounds on estimation error as a complexity penalty. Surprisingly, this is the case even in situations when the difference between the empirical risk and true risk (and indeed the error of any estimate of the approximation error) decreases much more slowly than the complexity penalty. We give an oracle inequality showing that the resulting model selection method chooses a function with risk no more than the approximation error plus a constant times the complexity penalty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine the problem of prediction with expert advice in a setup where the learner is presented with a sequence of examples coming from different tasks. In order for the learner to be able to benefit from performing multiple tasks simultaneously, we make assumptions of task relatedness by constraining the comparator to use a lesser number of best experts than the number of tasks. We show how this corresponds naturally to learning under spectral or structural matrix constraints, and propose regularization techniques to enforce the constraints. The regularization techniques proposed here are interesting in their own right and multitask learning is just one application for the ideas. A theoretical analysis of one such regularizer is performed, and a regret bound that shows benefits of this setup is reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular matrix regulates many cellular processes likely to be important for development and regression of corpora lutea. Therefore, we identified the types and components of the extracellular matrix of the human corpus luteum at different stages of the menstrual cycle. Two different types of extracellular matrix were identified by electron microscopy; subendothelial basal laminas and an interstitial matrix located as aggregates at irregular intervals between the non-vascular cells. No basal laminas were associated with luteal cells. At all stages, collagen type IV α1 and laminins α5, β2 and γ1 were localized by immunohistochemistry to subendothelial basal laminas, and collagen type IV α1 and laminins α2, α5, β1 and β2 localized in the interstitial matrix. Laminin α4 and β1 chains occurred in the subendothelial basal lamina from mid-luteal stage to regression; at earlier stages, a punctate pattern of staining was observed. Therefore, human luteal subendothelial basal laminas potentially contain laminin 11 during early luteal development and, additionally, laminins 8, 9 and 10 at the mid-luteal phase. Laminin α1 and α3 chains were not detected in corpora lutea. Versican localized to the connective tissue extremities of the corpus luteum. Thus, during the formation of the human corpus luteum, remodelling of extracellular matrix does not result in basal laminas as present in the adrenal cortex or ovarian follicle. Instead, novel aggregates of interstitial matrix of collagen and laminin are deposited within the luteal parenchyma, and it remains to be seen whether this matrix is important for maintaining the luteal cell phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uniformization method (also known as randomization) is a numerically stable algorithm for computing transient distributions of a continuous time Markov chain. When the solution is needed after a long run or when the convergence is slow, the uniformization method involves a large number of matrix-vector products. Despite this, the method remains very popular due to its ease of implementation and its reliability in many practical circumstances. Because calculating the matrix-vector product is the most time-consuming part of the method, overall efficiency in solving large-scale problems can be significantly enhanced if the matrix-vector product is made more economical. In this paper, we incorporate a new relaxation strategy into the uniformization method to compute the matrix-vector products only approximately. We analyze the error introduced by these inexact matrix-vector products and discuss strategies for refining the accuracy of the relaxation while reducing the execution cost. Numerical experiments drawn from computer systems and biological systems are given to show that significant computational savings are achieved in practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncontrolled fibroblast growth factor (FGF) signaling can lead to human diseases, necessitating multiple layers of self-regulatory control mechanisms to keep its activity in check. Herein, we demonstrate that FGF9 and FGF20 ligands undergo a reversible homodimerization, occluding their key receptor binding sites. To test the role of dimerization in ligand autoinhibition, we introduced structure-based mutations into the dimer interfaces of FGF9 and FGF20. The mutations weakened the ability of the ligands to dimerize, effectively increasing the concentrations of monomeric ligands capable of binding and activating their cognate FGF receptor in vitro and in living cells. Interestingly, the monomeric ligands exhibit reduced heparin binding, resulting in their increased radii of heparan sulfate-dependent diffusion and biologic action, as evidenced by the wider dilation area of ex vivo lung cultures in response to implanted mutant FGF9-loaded beads. Hence, our data demonstrate that homodimerization autoregulates FGF9 and FGF20's receptor binding and concentration gradients in the extracellular matrix. Our study is the first to implicate ligand dimerization as an autoregulatory mechanism for growth factor bioactivity and sets the stage for engineering modified FGF9 subfamily ligands, with desired activity for use in both basic and translational research.