999 resultados para ENZYMATIC FUNCTION
Resumo:
Large scale enzymatic resolution of racemic sulcatol 2 has been useful for stereoselective biocatalysis. This reaction was fast and selective, using vinyl acetate as donor of acyl group and lipase from Candida antarctica (CALB) as catalyst. The large scale reaction (5.0 g, 39 mmol) afforded high optical purities for S-(+)-sulcatol 2 and R-(+)-sulcatyl acetate 3, i.e., ee > 99 per cent and good yields (45 per cent) within a short time (40 min). Thermodynamic parameters for the chemoesterification of sulcatol 2 by vinyl acetate were evaluated. The enthalpy and Gibbs free energy values of this reaction were negative, indicating that this process is exothermic and spontaneous which is in agreement with the reaction obtained enzymatically.
Resumo:
The use of the fish silage as an ingredient in feed for aquatic organisms is an alternative to solve sanitary and environmental problems caused by the lack of an adequate destination for the residues generated by the fishing industry. It would also lower the costs with feed, and consequently the fish production costs, since the expenses with the feed account for approximately 60% of the total cost. The objective of this study was to evaluate the fatty acid composition of the acid silage (AS), biological silage (BS) and enzymatic silage (ES) produced from discardings of the culture and from processing residues of the Nile tilapia (Oreochromis niloticus). The values found for lipids (dry matter basis) were: 12.45; 12.25 and 12.17 g 100 g(-1) for BS, AS, and ES, respectively. The fatty acids present in the lipid fraction of the silages are predominantly unsaturated. Oleic acid was present in larger amounts (30.49, 28.60 and 30.60 g 100 g(-1) of lipids for BS, AS and ES, respectively). Among saturated fatty acids, palmitic and stearic acids were present in larger amounts. Only traces of eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids were found. The silages produced from discardings of the culture and processing residues of the Nile tilapia are not a good source of EPA and DHA for fish feeds.
Resumo:
OBJECTIVES: To determine somesthetic, olfactory, gustative and salivary abnormalities in patients with burning mouth syndrome (BMS), idiopathic trigeminal neuralgia (ITN) and trigeminal postherpetic neuralgia (PHN). SUBJECTS AND METHODS: Twenty patients from each group (BMS, ITN, PHN) and 60 healthy controls were evaluated with a systematized quantitative approach of thermal (cold and warm), mechanical, pain, gustation, olfaction and salivary flow; data were analyzed with ANOVA, Tukey, Kruskal Wallis and Dunn tests with a level of significance of 5%. RESULTS: There were no salivary differences among the groups with matched ages; the cold perception was abnormal only at the mandibular branch of PHN (P = 0.001) and warm was abnormal in all trigeminal branches of PHN and BMS; mechanical sensitivity was altered at the mandibular branch of PHN and in all trigeminal branches of BMS. The salty, sweet and olfactory thresholds were higher in all studied groups; the sour threshold was lower and there were no differences of bitter. CONCLUSION: All groups showed abnormal thresholds of gustation and olfaction; somesthetic findings were discrete in ITN and more common in PHN and BMS; central mechanisms of balance of sensorial inputs might be underlying these observations. Oral Diseases (2010) 16, 482-487
Resumo:
Active lymphocytes (LY) and macrophages (M Phi) are involved in the pathophysiology of rheumatoid arthritis (RA) Due to its anti-inflammatory effect. physical exercise may be beneficial in RA by acting on the immune system (IS) Thus, female Wistar rats with type II collagen-induced arthritis (CIA) were submitted to swimming training (6 weeks. 5 days/week. 60 min/day) and some biochemical and immune parameters, such as the metabolism of glucose and glutamine and function of LY and M. were evaluated In addition, plasma levels of some hormones and of interleukin-2 (IL-2) were also determined Results demonstrate that CIA increased lymphocyte proliferation (1.9- and 1 7-fold, respectively, in response to concanavalin A (ConA) and lipopolysaccharide (LPS)), as well as macrophage H(2)O(2) production (1 6-fold), in comparison to control Exercise training prevented the activation of immune cells, induced by CIA. and established a pattern of substrate utilization similar to that described as normal for these cells. Exercise also promoted an elevation of plasma levels of corticosterone (22 2%), progesterone (1 7-fold) and IL-2 (2 6-fold) Our data suggest that chronic exercise is able to counterbalance the effects of CIA on cells of the IS. reinforcing the proposal that the benefits of exercise may not be restricted to aerobic capacity and/or strength improvement Copyright (C) 2010 John Wiley & Sons, Ltd
Resumo:
Aim. To compare the measurements of women`s pelvic floor musculature strength (PFMS) during pregnancy and postpartum period. Background. Pregnancy and childbirth can have an influence on the muscles and pelvic floor and can cause morbidities of women`s genito-urinary tract. Design. A prospective cohort study. Methods. There were included 226 primigravidae women, attended by community health services in the city of Itapecerica da Serra, Sao Paulo, Brazil. The participants were followed in four stages: (1) within 12 weeks of pregnancy; (2) between 36-40 weeks of pregnancy; (3) within 48 hours after childbirth; (4) 42-60 days after childbirth. Data were collected from February 2007-August 2008. The pelvic floor musculature strength was evaluated by perineometry and digital vaginal palpation in stages 1, 2 and 4. The final sample included 110 women who completed all four stages of the study. Results. The pelvic floor musculature strength of the women did not change significantly during pregnancy or after delivery (anova: p = 0 center dot 78). In all three examined stages, a low-intensity pelvic floor musculature strength was prevalent (in mmHg: stage 1 = 15 center dot 9; stage 2 = 15 center dot 2, stage 4 = 14 center dot 7), with scores from 0-3 on the Oxford scale. The pelvic floor musculature strength did not differ in relation to maternal age, skin colour, conjugal status, dyspareunia, stool characteristics, type of delivery, or conditions of the perineum. An interaction between maternal nutritional state and newborn`s weight may affect the pelvic floor musculature strength (manova: p = 0 center dot 04). Conclusion. Pregnancy and childbirth did not reduce significantly pelvic floor musculature strength. The perineometry and digital vaginal palpation used to assess the pelvic floor musculature strength were well accepted by the women. Relevance to clinical practice. In clinical practice, digital vaginal palpation is effective for supporting the diagnosis of urinary, intestinal and sexual dysfunctions. Perineometry use is particularly important together with the performance of perineal exercises with biofeedback in the treatment these disorders.
Resumo:
Bueno CR Jr, Ferreira JC, Pereira MG, Bacurau AV, Brum PC. Aerobic exercise training improves skeletal muscle function and Ca(2+) handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109: 702-709, 2010. First published July 1, 2010; doi: 10.1152/japplphysiol.00281.2010.-The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca(2+) abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic alpha(2A)/alpha(2C) adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca(2+) handling-related protein expression by Western blot. alpha(2A)/alpha(2C)ARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca(2+) release-related proteins [alpha(1)-, alpha(2)-, and beta(1)-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca(2+) reuptake-related proteins [sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) 1/2 and Na(+)/Ca(2+) exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca(2+) handling toward WT levels. We provide evidence that Ca(2+) handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca(2+) handling proteins.
Resumo:
beta-blockers, as class, improve cardiac function and survival in heart failure (HF). However, the molecular mechanisms underlying these beneficial effects remain elusive. In the present study, metoprolol and carvedilol were used in doses that display comparable heart rate reduction to assess their beneficial effects in a genetic model of sympathetic hyperactivity-induced HF (alpha(2A)/alpha(2C)-ARKO mice). Five month-old HF mice were randomly assigned to receive either saline, metoprolol or carvedilol for 8 weeks and age-matched wild-type mice (WT) were used as controls. HF mice displayed baseline tachycardia, systolic dysfunction evaluated by echocardiography, 50% mortality rate, increased cardiac myocyte width (50%) and ventricular fibrosis (3-fold) compared with WT. All these responses were significantly improved by both treatments. Cardiomyocytes from HF mice showed reduced peak [Ca(2+)](i) transient (13%) using confocal microscopy imaging. Interestingly, while metoprolol improved [Ca(2+)](i) transient, carvedilol had no effect on peak [Ca(2+)](i) transient but also increased [Ca(2+)] transient decay dynamics. We then examined the influence of carvedilol in cardiac oxidative stress as an alternative target to explain its beneficial effects. Indeed, HF mice showed 10-fold decrease in cardiac reduced/oxidized glutathione ratio compared with WT, which was significantly improved only by carvedilol treatment. Taken together, we provide direct evidence that the beneficial effects of metoprolol were mainly associated with improved cardiac Ca(2+) transients and the net balance of cardiac Ca(2+) handling proteins while carvedilol preferentially improved cardiac redox state. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Although neurohumoral excitation is the hallmark of heart failure (HF), the mechanisms underlying this alteration are not entirely known. Abnormalities in several systems contribute to neurohumoral excitation in HF, including arterial and cardiopulmonary baroreceptors, central and peripheral chemoreceptors, cardiac chemoreceptors, and central nervous system abnormalities. Exercise intolerance is characteristic of chronic HF, and growing evidence strongly suggests that exercise limitation in patients with chronic HF is not due to elevated filling pressures or inadequate cardiac output during exercise, but instead due to skeletal myopathy. Several lines of evidence suggest that sympathetic excitation contributes to the skeletal myopathy of HF, since sympathetic activity mediates vasoconstriction at rest and during exercise likely restrains muscle blood flow, arteriolar dilatation, and capillary recruitment, leading to underperfused areas of working muscle, and areas of muscle ischemia, release of reactive oxygen species (ROS), and inflammation. Although controversial, either unmyelinated, metabolite-sensitive afferent fibers, and/or myelinated, mechanosensitive afferent fibers in skeletal muscle underlie the exaggerated sympathetic activity in HF. Exercise training has emerged as a unique non-pharmacological strategy for the treatment of HF. Regular exercise improves functional capacity and quality of life, and perhaps prognosis in chronic HF patients. Recent studies have provided convincing evidence that these benefits in chronic HF patients are mediated by significant reduction in central sympathetic outflow as a consequence of improvement in arterial and chemoreflex controls, and correction of central nervous system abnormalities, and increase in peripheral blood flow with reduction in cytokines and increase in mass muscle.
Resumo:
Creatine (CR) supplementation is commonly used by athletes. However, its effects on renal function remain controversial. The aim of this study was to evaluate the effects of creatine supplementation on renal function in healthy sedentary males (18-35 years old) submitted to exercise training. A randomized, double-blind, placebo-controlled trial was performed. Subjects (n = 18) were randomly allocated to receive treatment with either creatine (CR) (similar to 10 g day(-1) over 3 months) or placebo (PL) (dextrose). All subjects undertook moderate intensity aerobic training, in three 40-min sessions per week, during 3 months. Serum creatinine, serum and urinary sodium and potassium were determined at baseline and at the end of the study. Cystatin C was assessed prior to training (PRE), after 4 (POST 4) and 12 weeks (POST 12). Cystatin C levels (mg L-1) (PRE CR: 0.82 +/- 0.09; PL: 0.88 +/- 0.07 vs. POST 12 CR: 0.71 +/- 0.06; PL: 0.75 +/- 0.09, P = 0.0001) were decreased over time, suggesting an increase in glomerular filtration rate. Serum creatinine decreased with training in PL but was unchanged with training in CR. No significant differences were observed within or between groups in other parameters investigated. The decrease in cystatin C indicates that high-dose creatine supplementation over 3 months does not provoke any renal dysfunction in healthy males undergoing aerobic training. In addition, the results suggest that moderate aerobic training per se may improve renal function.
Resumo:
The excess of sugarcane bagasse (SCB) from the sugar-alcohol industry is considered a by-product with great potential for many bioproducts production. This work had as objective to verify the performance of sugarcane bagasse hemicellulosic hydrolysate (SCBHH) as source of sugars for enzymatic or in vitro xylitol production. For this purpose, xylitol enzymatic production was evaluated using different concentrations of treated SCBHH in the commercial reaction media. The weak acid hydrolysis of SCB provided a hydrolysate with 18 g L(-1) and 6 g L(-1) of xylose and glucose, respectively. Considering the reactions, changes at xylose xylitol conversion efficiency and volumetric productivity in xylitol were not observed for the control experiment and using 20 and 40% v.v (1) of SCBHH in the reaction media. The conversion efficiency achieved 100% in all the experiments tested. The results showed that treated SCBHH is suitable as xylose and glucose source for the enzymatic xylitol production and that this process has potential as an alternative for traditional xylitol production ways. (C) 2011 Published by Elsevier Ltd.
Resumo:
This work aims to evaluate the fermentability of cellulosic hydrolysates obtained by enzymatic saccharification of sugarcane bagasse pretreated by hydrothermal processing using Candida guilliermondii FTI 20037 yeast. The inoculum was obtained from yeast culture in a medium containing glucose as a carbon source supplemented with rice bran extract, CaCl(2)center dot 2H(2)O and (NH(4))(2)SO(4) in 50 mL Erlenmeyer flasks, containing 20 mL of medium, initial 5.5 pH under agitation of an orbital shaker (200 rpm) at 30A degrees C for 24 h. The cellulosic hydrolysates, prior to being used as a fermentation medium, were autoclaved for 15 min at 0.5 atm and supplemented with the same nutrients employed for the inoculum, except the glucose, using the same conditions for the inoculum, but with a period of 48 h. Preliminary results showed the highest consumption of glucose (97%) for all the hydrolysates, at 28 h of fermentation. The highest concentration of ethanol (20.5 g/L) was found in the procedure of sugarcane bagasse pretreated by hydrothermal processing (195A degrees C/10 min in 20 L reactor) and delignificated with NaOH 1.0% (w/v), 100A degrees C, 1 h in 500 mL stainless steel ampoules immersed in an oil bath.
Resumo:
Brewer`s spent grain components (cellulose, hemicellulose and lignin) were fractionated in a two-step chemical pretreatment process using dilute sulfuric acid and sodium hydroxide solutions. The cellulose pulp produced was hydrolyzed with a cellulolytic complex, Celluclast 1.5 L, at 45 degrees C to convert the cellulose into glucose. Several conditions were examined: agitation speed (100, 150 and 200 rpm), enzyme loading (5, 25 and 45 FPU/g substrate), and substrate concentration (2, 5 and 8% w/v), according to a 2(3) full factorial design aiming to maximize the glucose yield. The obtained results were interpreted by analysis of variance and response surface methodology. The optimal conditions for enzymatic hydrolysis of brewer`s spent grain were identified as 100 rpm, 45 FPU/g and 2% w/v substrate. Under these conditions, a glucose yield of 93.1% and a cellulose conversion (into glucose and cellobiose) of 99.4% was achieved. The easiness of glucose release from BSG makes this substrate a raw material with great potential to be used in bioconversion processes.
Resumo:
Enzymatic hydrolysis of brewer`s spent grain in three different forms: original (untreated), pretreated by dilute acid (cellulignin), and pretreated by a sequence of dilute acid and dilute alkali (cellulose pulp), was studied to verify the effect of hemicellulose and lignin on cellulose conversion into glucose. The hydrolysis was carried out using a commercial cellulase concentrate (Celluclast 1.5 L) in an enzyme/substrate ratio of 45 FPU/g, 2% (w/v) substrate concentration, 45 degrees C for 96 h. According to the results, the cellulose hydrolysis was affected by the presence of hemicellulose and/or lignin in the sample. The cellulose conversion ratio (defined as glucose yield + cellobiose yield) from cellulignin was 3.5-times higher than that from untreated sample, whereas from cellulose pulp such value was 4-times higher, correspondent to 91.8% (glucose yield of 85.6%). This best result was probably due to the strong modification in the material structure caused by the hemicellulose and lignin removal from the sample. As a consequence, the cellulose fibers were separated being more susceptible to the enzymatic attack. It was concluded that the lower the hemicellulose and lignin contents in the sample, the higher the efficiency of cellulose hydrolysis. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Resumo:
Chemithermomechanical (CTM) processing was used to pretreat sugarcane bagasse with the aim of increasing cell wall accessibility to hydrolytic enzymes. Yields of the pretreated samples were in the range of 75-94%. Disk refining and alkaline-CTM and alkaline/sulfite-CTM pretreatments yielded pretreated materials with 21.7, 17.8, and 15.3% of lignin, respectively. Hemicellulose content was also decreased to some extent. Fibers of the pretreated materials presented some external fibrillation, fiber curling, increased swelling, and high water retention capacity. Cellulose conversion of the alkaline-CTM- and alkaline/sulfite-CTM-pretreated samples reached 50 and 85%, respectively, after 96 h of enzymatic hydrolysis. Two samples with low initial lignin content were also evaluated after the mildest alkaline-CTM pretreatment. One sample was a partially delignified mill-processed bagasse. The other was a sugarcane hybrid selected in a breeding program. Samples with lower initial lignin content were hydrolyzed considerably faster in the first 24 h of enzymatic digestion. For example, enzymatic hydrolysis of the sample with the lowest initial lignin content (14.2%) reached 64% cellulose conversion after only 24 h of hydrolysis when compared with the 30% observed for the mill-processed bagasse containing an initial lignin content of 24.4%. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 27: 395-401, 2011