906 resultados para ENANTIOSELECTIVE ADDITION
Resumo:
We report a simple and rapid process for the room-temperature synthesis of gold nanoparticles using tannic acid, a green reagent, as both the reducing and stabilising agent. We systematically investigated the effect of pH on the size distribution of nanoparticles synthesized. Based on induction time and zeta- potential measurements, we show that particle size distribution is controlled by a fine balance between the rates of reduction (determined by the initial pH of reactants) and coalescence (determined by the pH of the reaction mixture) in the initial period of growth. This insight led to the optimal batch process for size-controlled synthesis of 2-10 nm gold nanoparticles - slow addition (within 10 minutes) of chloroauric acid into tannic acid.
Resumo:
In solution phase, aliphatic amines add on to fullerenes; vapourization of graphite in presence of methylamine gives nitrogeneous C60 derivatives. Reactions of C60 with SbCl5 and liquid Br2 yield halogen adducts.
Resumo:
The effect of the addition of p-aminophenol and aniline-based epoxy diluents on the curing behavior of highly viscous tetraglycidyl diamino diphenyl methane resin with diamino diphenyl sulfone hardener have been investigated kinetically by differential scanning calorimetry. Dynamic scans were carried out over a temperature range 30–300°C for different resin formulations. Isothermal scans at four differnt temperatures have also been carried out for the evaluation of kinetic parameters. Heat flow measurements at different heating rates have indicated the evidence of autocatalytic behavior of curing reaction following a simple nth-order kinetics.
Resumo:
Hydroxyapatite(OHAp)-based ceramic composites with added ZrO2 have been prepared both by sintering at 1400 °C and by hot isostatic pressing (HIP) at 1450 °C and 140 MPa pressure (argon atmosphere). The development of the crystalline phases and the microstructure of the composites have been examined using X-ray diffraction, electron microscopy, infrared and magic-angle spinning nuclear magnetic resonance (MASNMR) spectroscopic techniques. The fracture toughness and biocompatibility of the composites have also been studied. The effect of the addition of CeO2- and Y2O3-stabilized ZrO2 and of simple monoclinic ZrO2 to the initial physical mixture, on the structure and properties of the resulting composites has been investigated. In most of the sintered or HIP samples, the OHAp decomposes into tricalcium phosphate (β-TCP). CaO, which forms as a product of decomposition, dissolves completely in ZrO2 and stabilizes the latter in its cubic/tetragonal phase. Presence of the β-TCP phase in the product seems to be the result of a structural synergistic effect of hexagonal OHAp. Two structurally distinct orthophosphate groups have been identified in the composites by MASNMR of 31P and attributed to decomposition products of OHAp at higher temperatures. The composites possess high KIC values (2–3 times higher than that of pure OHAp). Decomposition of hydroxyapatite gives rise to differences in microstructure between HIP and simply sintered composites although fracture toughness values are similar in magnitude indicating the presence of several toughening mechanisms. The in vitro SP2-O cell test suggests that these composites possess good biocompatibility. The combination of good biocompatibility, desirable microstructure and easy availability of initial reactants indicates that the simply sintered composite of OHAp and monoclinic ZrO2(ZAP-30) appears to be the most suitable for prosthetic applications.
Resumo:
Enantioselective synthesis of possible diastereomers of heptadeca-1-ene-4,6-diyne-3,8,9,10-tetrol, a structure proposed for the natural product isolated from Hydrocotyle leucocephala is accomplished. The reported spectral data of the natural product did not match those of any of the isomers that were synthesized and established that the structure proposed for the natural product is not correct and requires revision.
Resumo:
Enantioselective synthesis of both the enantiomeric forms of the hydrindane derivatives mentioned in the title, potential chiral precursors in terpenoid synthesis, starling from R-carvone employing two different cyclopentannulation methodologies is described.
Resumo:
The microstructural changes of Al-22 wt%U and Al-46 wt%U alloys containing 3 wt% Zr were investigated after heat treatment at 620 degrees C for 1 to 45 days, Though it is reported that addition of similar to 3 wt% Zr stabilizes the (U,Zr)Al-3 phase at room temperature, the present investigation shows that the (U,Zr)Al-3 phase is not stable but slowly transforms to the U0.9Al4 phase, The high temperature creep curves generated for these ternary alloys showed a wavy pattern which also suggests that the (U,Zr)Al-3 phase is not stable.
Resumo:
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
Resumo:
The use of fac-[Mo(CO)(3)(MeCN)(eta(2)-L(1))] (1a) {L(1) = Ph(2)PN(Pr-i)PPh(DMP)}(2) as a precursor to metalloligands and bimetallic, heterotrimetallic, and heptacoordinated complexes is reported. The reaction of 1a with diphosphazane, dppa, or a diphosphinoalkane such as dppm or dppe yields the fac-eta(1)-diphosphine substituted metalloligands, fac-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-PXP)] {PXP = dppa (2), dppm (3), and dppe (4)}. These undergo isomerization to yield the corresponding mer-diphosphine complexes (5-7). Oxidation of the uncoordinated phosphorus atom of the mer-eta(1)-dppm-substituted complex eventually provides mer-[Mo(CO)(3)-(eta(2)-L(1)){eta(1)-Ph(2)PCH(2)P(O)Ph(2)}](8). The structure of the latter complex has been confirmed by single crystal X-ray diffraction {triclinic system, P ($) over bar 1; a = 11.994(3), b = 14.807(2), c = 15.855(3) Angstrom; alpha = 114.24(1), beta = 91.35(2), and gamma = 98.95(1)degrees; Z = 2, 4014 data (F-0 > 5 sigma(F-0)), R = 0.066, R(W) = 0.069}. Treatment of the dppe metalloligand 7 with [PtCl2(COD)] yields the heterotrimetallic complex cis-[PtCl2{mer-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-dppe]}(2)] (9). Attempts to prepare a related trimetallic complex with the dppm-containing metalloligand were unsuccessful; only the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) and cis-[PtCl2(eta(2)-dppm)] were obtained. Reaction of la with dppe in the ratio 2:1 yields the mer-mer dinuclear complex [{mer-[Mo(CO)(3)(eta(2)-L(1))]}(2)(mu-dppe)] (10) bridged by dppe. Oxidation of 1a with iodine yields the Mo(II) heptacoordinated complex [MoI2(CO)(2)(eta(3)-L(1))] (11) with tridentate PPN coordination. The same Mo(II) complex 11 is also obtained by the direct oxidation of the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) with iodine. The structure of 11 has been confirmed by X-ray diffraction studies {monoclinic system, Cc; a = 10.471(2), b = 19.305(3), c = 17.325(3) Angstrom; beta = 95.47(2)degrees; Z = 4, 3153 data (F-0 > 5 sigma(F-0)), R = 0.049, R(W) = 0.051}. This complex exhibits an unusual capped-trigonal prismatic geometry around the metal. A similar heptacoordinated complex 12 with a chiral diphosphazane ligand {L(3) = (S,R)-P(h)2PN-(*CHMePh)*PPh(DMP)} has also been synthesized.
Resumo:
The enantioselective synthesis of the natural products cladospolide B, cladospolide C, and iso-cladospolide B has been accomplished from tartaric acid. Key reactions in the synthetic sequence include the elaboration of a gamma-hydroxy amide derived from tartaric acid via alkene cross metathesis, Yamaguchi lactonization, and ring closing metathesis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The lambda(3)-cyclotriphosphazanes, [EtNP(OR)](3) [R = 2,6-Me2C6H3 (1), 4-BrC6H4 (2), or CH2CF3(3)], on treatment with tetrachloro-1,2-benzoquinone (TCB) give the lambda(5)-cyclodiphosphazanes, [EtNP(O2C6Cl4)(OR)][EtNP(O2C6Cl4){N(Et)P(OR)(2)}] (5-7) by an unusual ring contraction-rearrangement. The reaction of the mixed substituent lambda(3)-cyclotriphosphazane, [(EtN)(3)P-3(OR)(2)(OR')] [R = 2,6-Me2C6H3, R' = 4-BrC6H4] (4), with TCB gives the lambda(5)-cyclodiphosphazane, [EtNP(O2C6Cl4)(OR')][EtNP(O2C6Cl4){N(Et)P(OR)(2)}] (8), in which 4-bromophenoxide resides on one of the ring phosphorus atoms. The lambda(3)-bicyclic tetraphosphapentazane, (EtN)(5)P-4(OPh)(2), on treatment with TCB undergoes a double ring contraction-rearrangement to give the lambda(5)-cyclodiphosphazane, (EtN)[(EtN)(2)P-2(O2C6Cl4)(2)(OPh)](2) (9). Variable-temperature and high-field P-31 NMR studies indicate the presence of more than one isomer in solution for the rearranged products 5-9. The solid state structure of 8 reveals a trans arrangement of the substituents with respect to the P2N2 ring in contrast to the gauche arrangement observed for 5.
Resumo:
Enantioselective synthesis of 16-membered trilactone macrolides, macrosphelide A and E from (S)-lactic acid is described. Key features of the synthesis include the utility of a hitherto unexplored beta-ketophosphonate derived from lactic acid and Yamaguchi lactonization leading to the title compounds. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Thiolates generated in situ by the action of ammonium tetrathiomolybdate on alkyl halides, thiocyanates and disulfides undergo Michael addition to alpha,beta-unsaturated esters, nitriles :and ketones in water under neutral conditions.
Resumo:
Investigation of the reaction of La2CuO4 with several binary metal oxides in the solid state at elevated temperatures has revealed three different reaction pathways. Reaction of La2CuO4 with strongly acidic oxides such as Re2O7, MoO3, and V2O5 follows a metathesis route, yielding a mixture of products: La3ReO8/La2MoO6/LaVO4 and CuO. Oxides such as TiO2, MnO2, and RuO2 which are not so acidic yield addition products: La2CuMO6 (M = Ti, Mn, Ru). SnO2 is a special case which appears to follow a metathesis route, giving La2Sn2O7 pyrochlore and CuO, which on prolonged reaction transform to the layered perovskite La2CuSnO6. The reaction of La2CuO4 with lower valence oxides VO2 and MoO2, on the other hand, follows a novel redox metathesis route, yielding a mixture of LaVO4/LaCuO2 and La2MoO6/Cu, respectively. This result indicates that it is the redox reactivity involving V-IV + Cu-II --> V-V + Cu-I and Mo-IV + Cu-II --> Mo-VI + Cu-0, and not the acidity of the binary oxide, that controls the nature of the products formed in these cases. The general significance of these results toward the synthesis of complex metal oxides containing several metal atoms is discussed.