968 resultados para ELECTRON TRANSPORT PARAMETERS
Resumo:
A specific requirement for coenzyme Q in the maintenance of trans-plasma-membrane redox activity is demonstrated. Extraction of coenzyme Q from membranes resulted in inhibition of NADH-ascorbate free radical reductase (trans electron transport), and addition of coenzyme Q10 restored the activity. NADH-cytochrome c oxidoreductase (cis electron transport) did not respond to the coenzyme Q status. Quinone analogs inhibited trans-plasma-membrane redox activity, and the inhibition was reversed by coenzyme Q. A 34-kDa coenzyme Q reductase (p34) has been purified from pig-liver plasma membranes. The isolated enzyme was sensitive to quinone-site inhibitors. p34 catalyzed the NADH-dependent reduction of coenzyme Q10 after reconstitution in phospholipid liposomes. When plasma membranes were supplemented with extra p34, NADH-ascorbate free radical reductase was activated but NADH-cytochrome c oxidoreductase was not. These results support the involvement of p34 as a source of electrons for the trans-plasma-membrane redox system oxidizing NADH and support coenzyme Q as an intermediate electron carrier between NADH and the external acceptor ascorbate free radical.
Resumo:
We study a single-electron transistor (SET) based upon a II–VI semiconductor quantum dot doped with a single-Mn ion. We present evidence that this system behaves like a quantum nanomagnet whose total spin and magnetic anisotropy depend dramatically both on the number of carriers and their orbital nature. Thereby, the magnetic properties of the nanomagnet can be controlled electrically. Conversely, the electrical properties of this SET depend on the quantum state of the Mn spin, giving rise to spin-dependent charging energies and hysteresis in the Coulomb blockade oscillations of the linear conductance.
Resumo:
We study the effect of magnetic anisotropy in a single electron transistor with ferromagnetic electrodes and a non-magnetic island. We identify the variation δμ of the chemical potential of the electrodes as a function of the magnetization orientation as a key quantity that permits to tune the electrical properties of the device. Different effects occur depending on the relative size of δμ and the charging energy. We provide preliminary quantitative estimates of δμ using a very simple toy model for the electrodes.
Resumo:
We describe a method to produce local heating or cooling (depending on how the system is tuned) in a mesoscopic device by transport of electrons. The mechanism can operate on molecules or quantum dots, or any system where the local modes are coupled to vibrations. We believe this will be of future interest in micro electro mechanical systems (MEMS). The amount of heating/cooling obtained depends on the details of the device. We also perform a numerical calculation to display the effect. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
La Teoria di Densità Funzionale (DFT) e la sua versione dipendente dal tempo (TDDFT) sono strumenti largamente usati per simulare e calcolare le proprietà statiche e dinamiche di sistemi con elettroni interagenti. La precisione del metodo si basa su una serie di approssimazioni degli effetti di exchange correlation fra gli elettroni, descritti da un funzionale della sola densità di carica. Nella presente tesi viene testata l'affidabilità del funzionale Mixed Localization Potential (MLP), una media pesata fra Single Orbital Approximation (SOA) e un potenziale di riferimento, ad esempio Local Density Approximation (LDA). I risultati mostrano capacità simulative superiori a LDA per i sistemi statici (curando anche un limite di LDA noto in letteratura come fractional dissociation) e dei progressi per sistemi dinamici quando si sviluppano correnti di carica. Il livello di localizzazione del sistema, inteso come la capacità di un elettrone di tenere lontani da sé altri elettroni, è descritto dalla funzione Electron Localization Function (ELF). Viene studiato il suo ruolo come guida nella costruzione e ottimizzazione del funzionale MLP.
Resumo:
Programa de doctorado en Oceanografía. La fecha de publicación es la fecha de lectura
Resumo:
Graphene as a carbon monolayer has attracted extensive research interest in recent years. My research work within the frame of density functional theory has suggested that positioning graphene in proximity to h-BN may induce a finite energy gap in graphene, which is important for device applications. For an AB-stacked graphene/BN bilayer, a finite gap is induced at the equilibrium configuration. This induced gap shows a linear relationship with the applied strain. For a graphene/BN/graphene trilayer, a negligible gap is predicted in the ground state due to the overall symmetry of the system. When an electric field is applied, a tunable gap can be obtained for both AAA and ABA stackings. Enhanced tunneling current in the AA-stacked bilayer nanoribbons is predicted compared to either single-layer or AB-stacked bilayer nanoribbons. Interlayer separation between the nanoribbons is shown to have a profound impact on the conducting features. The effect of boron or nitrogen doping on the electronic transport properties of C60 fullerene is studied. The BC59 fullerene exhibits a considerably higher current than the pristine or nitrogen doped fullerenes beyond the applied bias of 1 V, suggesting it can be an effective semiconductor in p-type devices. The interaction between nucleic acid bases - adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) - and a hydrogen-passivated silicon nanowire (SiNW) is investigated. The binding energy of the bases with the SiNW shows the order: G > A~C~T~U. This suggests that the interaction strength of a hydrogen passivated SiNW with the nucleic acid bases is nearly the same-G being an exception. The nature of the interaction is suggested to be electrostatic.
Resumo:
In this work we present results of the first Townsend coefficient (alpha) in pure isobutane by measuring the current growth as a function of the electric field strength in a pulsed irradiation regime. A Resistive Plate Chamber (RPC)-like configuration was used. To validate this method, as well as to crosscheck the experimental apparatus, measurements of the alpha parameter were firstly carried out with pure nitrogen and the results compared to the accurate data available in the literature. The data obtained with isobutane in a field range from 145 Td up to 200 Td were well-matched to those calculated with Magboltz versions 2.7.1 and 2.8.6. The experimental consistency of these results with other published data in the range of 550-1300 Td was very good, as demonstrated by the use of the Korff parameterization. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The carrier blocking property of polyterpenol thin films derived from non-synthetic precursor is studied using Electric Field Induced Optical Second Harmonic Generation (EFISHG) technique that can directly probe carrier motion in organic materials. A properly biased double-layer MIM device with a structure of indium zinc oxide (IZO)/polyterpenol/C₆₀/Al shows that by incorporating the polyterpenol thin film, the electron transport can be blocked while the hole transport is allowed. The inherent electron blocking hole transport property is verified using Al/C₆₀/Alq3/polyterpenol/IZO and Al/Alq3/polyterpenol/IZO structures. The rectifying property of polyterpenol is very promising and can be utilized in the fabrication of many organic devices.
Resumo:
Using the concept of energy-dependent effective field intensity, electron transport coefficients in nitrogen have been determined in E times B fields (E = electric field intensity, B = magnetic flux density) by the numerical solution of the Boltzmann transport equation for the energy distribution of electrons. It has been observed that as the value of B/p (p = gas pressure) is increased from zero, the perpendicular drift velocity increased linearly at first, reaches a maximum value, and then decreases with increasing B/p. In general, the electron mean energy is found to be a function of Eavet/p( Eavet = averaged effective electric field intensity) only, but the other transport coefficients, such as transverse drift velocity, perpendicular drift velocity, and the Townsend ionization coefficient, are functions of both E/p and B/p.
Resumo:
A method for determining the electron/hole transport length scale of model semiconducting polymer systems by scanning a narrow-light probe beam over the nonoverlapping anode/cathode region in asymmetric sandwich device structures is presented (see figure). Electron versus hole collection efficacy, and disorder and spatial anisotropy in the electrical transport parameters can be estimated.
Resumo:
We study electron transport through an Aharonov-Bohm (AB) interferometer with a noninteracting quantum dot in each of its arms. Both a magnetic flux phi threading through the AB ring and the Rashba spin-orbit (SO) interaction inside the two dots are taken into account. Due to the existence of the SO interaction, the electrons flowing through different arms of the AB ring will acquire a spin-dependent phase factor in the tunnel-coupling strengths. This phase factor, as well as the influence of the magnetic flux, will induce various interesting interference phenomena. We show that the conductance and the local density of states can become spin polarized by tuning the magnetic flux and the Rashba interaction strength. Under certain circumstances, a pure spin-up or spin-down conductance can be obtained when a spin-unpolarized current is injected from the external leads. Therefore, the electron spin can be manipulated by adjusting the Rashba spin-orbit strength and the structure parameters. (c) 2006 American Institute of Physics.
Resumo:
The ballistic transport of Rashba electrons in a straight structure in two-dimensional electron gas is studied. It is found that there is no mixing between the wave functions of spin up and spin down states, and the transfer matrix is independent for the spin in every interface. The influence of the structure and Rashba coefficient on the electron transport is investigated. Our results indicate that the transmission probabilities are independent of the sign and magnitude of the Rashba coefficient and it depends on the shape of the structure, especially the stub width. The antiresonance is found, where the quasiconfined state is formed in the center part of the structure.
Resumo:
Physiological data from extreme habitat organisms during stresses are vital information for comprehending their survival. The intertidal seaweeds are exposed to a combination of environmental stresses, the most influential one being regular dehydration and re-hydration. Porphyra katadai var. hemiphylla is a unique intertidal macroalga species with two longitudinally separated, color distinct, sexually different parts. In this study, the photosynthetic performance of both PSI and PSII of the two sexually different parts of P. katadai thalli during dehydration and re-hydration was investigated. Under low-grade dehydration the variation of photosystems of male and female parts of P. katadai were similar. However, after the absolute water content reached 42%, the PSI of the female parts was nearly shut down while that of the male parts still coordinated well and worked properly with PSII. Furthermore, after re-hydration with a better conditioned PSI, the dehydrated male parts were able to restore photosynthesis within 1 h, while the female parts did not. It is concluded that in P. katadai the susceptibility of photosynthesis to dehydration depends on the accommodative ability of PSI. The relatively lower content of phycobiliprotein in male parts may be the cause for a stronger PSI after severe dehydration.
Resumo:
A number of experiments have been undertaken at the Rutherford Appleton Laboratory that were designed to investigate the physics of fast electron transport relevant to fast ignition inertial fusion. The laser, operating at a wavelength of 1054 nm, provided pulses of up to 350 J of energy on target in a duration that varied in the range 0.5-5 ps and a focused intensity of up to 10(21) W cm(-2). A dependence of the divergence of the fast electron beam with intensity on target has been identified for the first time. This dependence is reproduced in two-dimensional particle-in-cell simulations and has been found to be an intrinsic property of the laser-plasma interaction. A number of ideas to control the divergence of the fast electron beam are described. The fractional energy transfer to the fast electron beam has been obtained from calibrated, time-resolved, target rear-surface radiation temperature measurements. It is in the range 15-30%, increasing with incident laser energy on target. The fast electron temperature has been measured to be lower than the ponderomotive potential energy and is well described by Haines' relativistic absorption model.