983 resultados para ELECTRON TRANSPORT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pulse-amplitude-modulation fluorometry and oxygen respirometry were used to investigate diel photosynthetic responses by symbiotic dinoflagellates to light levels in summer and winter on a high latitude coral reef. The symbiotic dinoflagellates from 2 species of reef-building coral (Porites cylindrica and Stylophora pistillata) showed photoinhibitory decreases in the ratio of variable (F-v) to maximal (F-m) fluorescence (F-v/F-m) as early as 09:00 h on both summer and winter days on the reefs associated with One Tree Island (23 degrees 30' S, 152 degrees 06' E; Great Barrier Reef, Australia). This was due to decreases in maximum, F-m, and to a smaller extent minimum, F-0, chlorophyll fluorescence. Complete recovery took 4 to 6 h and began to occur as soon as light levels fell each day. Chlorophyll fluorescence quenching analysis of corals measured during the early afternoon revealed classic regulation of photosystem II (PSII) efficiency through non-photochemical quenching (NPQ). These results appear to be similar to data collected for other algae and higher plants, suggesting involvement of the xanthophyll cycle of symbiotic dinoflagellates in regulating the quantum efficiency of PSII. The ability of symbiotic dinoflagellates to develop significant NPQ, however, depended strongly on when the symbiotic dinoflagellates were studied. Whereas symbiotic dinoflagellates from corals in the early afternoon showed a significant capacity to regulate the efficiency of PSII using NPQ, those sampled before sunrise had a slower and much reduced capacity, suggesting that elements of the xanthophyll cycle are suppressed prior to sunrise. A second major finding of this study is that the quantum efficiency of PSII in symbiotic dinoflagellates is strongly diurnal, and is as much as 50% lower just prior to sunrise than later in the day. When combined with oxygen flux data, these results indicate that a greater portion of the electron transport occurring later in the day is likely to be due to the increases in the rate of carbon fixation by Rubisco or to higher flutes through the Mehler-Ascorbate-Peroxidase (MAP) cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sodium cyanide is being used on reefs in the Asia-Pacific region to capture live fish for the aquarium industry, and to supply a rapidly growing, restaurant-based demand, The effects of cyanide on reef biota have not been fully explored. To investigate its effect on hard corals, we exposed small branch lips of Stylophora pistillata and Acropora aspera to cyanide concentrations estimated to occur during cyanide fishing. Pulse amplitude modulation (PAM) chlorophyll fluorescence techniques were used to examine photoinhibition and photosynthetic electron transport in the symbiotic algae (zooxanthellae) in the tissues of the corals, These measurements were made in situ and in real time using a recently developed submersible PAM fluorometer. In S. pistillata. exposure to cyanide resulted in an almost complete cessation in photosynthetic electron transport rate. Both species displayed marked decreases in the ratio of variable fluorescence (F-v) to maximal fluorescence (F-m) (dark-adapted F-v/F-m), following exposure to cyanide, signifying a decrease in photochemical efficiency. Dark-adapted F-v/F-m recovered to normal levels in similar to 6 d, although intense tissue discolouration, a phenomenon well-recognised as coral 'bleaching' was observed during this period, Bleaching was caused by loss of zooxanthellae from the coral tissues, a well-recognised sub-lethal stress response of corals. Using the technique of chlorophyll fluorescence quenching analysis, corals exposed to cyanide did not show light activation of Calvin cycle enzymes and developed high levels of non-photochemical quenching (q(N)), signifying the photoprotective dissipation of excess light as heat, These features are symptomatic of the known properties of cyanide as an inhibitor of enzymes of the Calvin cycle. The results of this in situ study show that an impairment of zooxanthellar photosynthesis is; the site of cyanide-mediated toxicity, and is the cue that causes corals to release their symbiotic zooxanthellac following cyanide exposure. This study demonstrates the efficacy of PBM fluorometry as a new tool for in situ stress assessment in zooxanthellate scleractinian corals. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, an investigation of the electrical and electrochemical properties responsible for the energy storage capability of nanocomposites has been carried out. We demonstrate that, in the case of the V2O5 xerogel and the nanocomposites polypyrrole (Ppy)/V2O5 and polyaniline (PANI)/V2O5, the quadratic logistic equation (QLE) can be used to fit the inverse of the resistance values as a function of the injected charge in non-steady-state conditions. This contributes to a phenomenological understanding of the lithium ion and electron transport. The departure of the experimental curve from the fitting observed for the V2O5 xerogel can be attributed to the trapping sites formed during the lithium electroinsertion, which was observed by electrochemical impedance spectroscopy. The amount of trapping sites was obtained on the basis of the QLE. Similar values used to fit the inverse of the resistance were also used to fit the absorbance changes, which is also associated with the small polaron hopping from the V(IV) to the V(V) sites. On the other hand, there was good agreement between the experimental and the theoretical data when the profile of the inverse of the resistance as a function of the amount of inserted lithium ions of the nanocomposites Ppy/V2O5 and PANI/ V2O5 was concerned. We suggest that the presence of the conducting polymers is responsible for the different electrical profile of the V2O5 xerogel compared with those of the nanocomposites. In the latter case, interactions between the lithium ions and oxygen atoms from V2O5 are shielded, thus decreasing the trapping effect of lithium ions in the V2O5 sites. The different values of the lithium ion diffusion coefficient into these intercalation materials are in agreement with this hypothesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photochemical efficiency of symbiotic dinoflagellates within the tissues of two reef-building corals in response to normal and excess irradiance at wafer temperatures < 30 C were investigated using pulse amplitude modulated (PAM) chlorophyll fluorescence techniques, Dark-adapted F-v/F-m showed clear diurnal changes, decreasing to a low at solar noon and increasing in the afternoon. However, F-v/F-m also drifted downwards at night or in prolonged darkness, and increased rapidly during the early morning twilight. This parameter also increased when the oxygen concentration of the wafer holding the corals was increased. Such changes have not been described previously, and most probably reflect state transition's associated with PQ pool reduction via chlororespiration. These unusual characteristics may be a feature of an endosymbiotic environment, reflective of the well-documented night-time tissue hypoxia that occurs in corals. F-v/F-m decreased to 0.25 in response to full sunlight in shade-acclimated (shade) colonies of Stylophora pistillata, which is considerably lower than in light-acclimated (sun) colonies. In sun colonies, the reversible decrease in F-v/F-m was caused by a lowering of F-m and F-o suggesting photoprotection and no lasting damage. The decrease in F-v/F-m, however, was caused by a decrease in F-m and an increase in F-o in shade colonies suggesting photoinactivation and long-term cumulative photoinhibition. Shade colonies rapidly lost their symbiotic algae (bleached) during exposure to full sunlight. This study is consistent with the hypothesis that excess light leads to chronic damage of symbiotic dinoflagellates and their eventual removal from reef-building corals. It is significant that this can occur with high light conditions alone.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new type of dual-channel PAM chlorophyll fluorometer has been developed, which is specialised in the detection of extremely small differences in photosynthetic activity in algae or thylakoids suspensions. In conjunction with standardised algae cultures or isolated thylakoids, the new device provides an ultrasensitive biotest system for detection of toxic substances in water samples. In this report, major features of the new device are outlined and examples of its performance are presented using suspensions of Phaeodactylum tricornutum (diatoms) and of freeze-dried thylakoids of Lactuca sativa (salad). Investigated and reference samples are exposed to the same actinic intensity of pulse-modulated measuring light. The quantum yields are assessed by the saturation pulse method. Clock-triggered repetitive measurements of quantum yield typically display a standard deviation of 0.1%, corresponding to the inhibition induced by 0.02 mug diuron l(-1). Hence, for diuron or compounds with similar toxicity, the detection limit is well below the 0.1 mug l(-1) defined as the limit for the presence of a single toxic substance in water by the European Commission drinking water regulation. The amounts of water and biotest material required for analysis are very small, as a single assay involves two 1 ml samples, each containing ca. 0.5 mug chlorophyll. Both with Phaeodactylum and thylakoids the relationship between inhibition and diuron concentration is strictly linear up to 10% inhibition, with very similar slopes. Apparent inhibition depends on the actinic effect of the measuring light, showing optima at 6 and 4 mumol quanta m(-2) s(-1) with Phaeodactylum and thylakoids, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes is a large and diverse group that is found in bacteria and archaea. These enzymes are characterised by a bis(molybdopterin guanine dinucleotide)Mo form of the molybdenum cofactor, and they are particularly important in anaerobic respiration including the dissimilatory reduction of certain toxic oxoanions. The structural and phylogenetic relationship between the proteins of this family is discussed. High-resolution crystal structures of enzymes of the DMSO reductase family have revealed a high degree of similarity in tertiary structure. However, there is considerable variation in the structure of the molybdenum active site and it seems likely that these subtle but important differences lead to the great diversity of function seen in this family of enzymes. This diversity of catalytic capability is associated with several distinct pathways of electron transport.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Little is known about causes of endemic rarity in plants. This study pioneered an approach that determined environmental variables in the rainforest habitat and generated physiological profiles for light, water, and nutrient relations for three endemically restricted versus widespread congeneric species' pairs. We found no overall consistent differences in the physiological variables between the group of restricted species and the group of widespread species, and congeneric species pairs were therefore examined individually. Availability of soil nutrients did not differ between restricted-widespread species sites suggesting that species grow under comparable nutrient conditions. Under ambient and manipulated higher light conditions, widespread Gardenia ovularis had a greater photosynthetic activity than restricted Gardenia actinocarpa suggesting that the two species differ in their photosynthetic abilities. Differences between Xanthostemon species included lower photosynthetic activity, higher transpiration rate, and a higher foliar manganese concentration in restricted Xanthostemon formosus compared to widespread Xanthostemon chrysanthus. It is suggested that X. formosus is restricted by its high water use to its current rainforest creek edge habitat, while X. chrysanthus grows in a range of environments, although naturally found in riparian rainforest. Restricted Archidendron kanisii had higher electron transport rates, greater dissipative capacity for removal of excess light, and more efficient investment of nitrogen into photosynthetic components, than its widespread relative Archidendron whitei. These observations and previous research suggest that restricted Archidendron kanisii is in the process of expanding its range. Physiological profiles suggest a different cause of rarity for each species. This has implications for the conservation strategies required for each species. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chlorophyll fluorescence measurements have a wide range of applications from basic understanding of photosynthesis functioning to plant environmental stress responses and direct assessments of plant health. The measured signal is the fluorescence intensity (expressed in relative units) and the most meaningful data are derived from the time dependent increase in fluorescence intensity achieved upon application of continuous bright light to a previously dark adapted sample. The fluorescence response changes over time and is termed the Kautsky curve or chlorophyll fluorescence transient. Recently, Strasser and Strasser (1995) formulated a group of fluorescence parameters, called the JIP-test, that quantify the stepwise flow of energy through Photosystem II, using input data from the fluorescence transient. The purpose of this study was to establish relationships between the biochemical reactions occurring in PS II and specific JIP-test parameters. This was approached using isolated systems that facilitated the addition of modifying agents, a PS II electron transport inhibitor, an electron acceptor and an uncoupler, whose effects on PS II activity are well documented in the literature. The alteration to PS II activity caused by each of these compounds could then be monitored through the JIP-test parameters and compared and contrasted with the literature. The known alteration in PS II activity of Chenopodium album atrazine resistant and sensitive biotypes was also used to gauge the effectiveness and sensitivity of the JIP-test. The information gained from the in vitro study was successfully applied to an in situ study. This is the first in a series of four papers. It shows that the trapping parameters of the JIP-test were most affected by illumination and that the reduction in trapping had a run-on effect to inhibit electron transport. When irradiance exposure proceeded to photoinhibition, the electron transport probability parameter was greatly reduced and dissipation significantly increased. These results illustrate the advantage of monitoring a number of fluorescence parameters over the use of just one, which is often the case when the F-V/F-M ratio is used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A regulatory protein, PpaA, involved in photosystem formation in the anoxygenic phototrophic proteobacterium Rhodobacter sphaeroides has been identified and characterized in vivo. Based on the phenotypes of cells expressing the ppaA gene in extra copy and on the phenotype of the ppaA null mutant, it was concluded that PpaA activates photopigment production and puc operon expression under aerobic conditions. This is in contrast to the function of the PpaA homologue from Rhodobacter capsulatus, AerR, which acts as a repressor under aerobic conditions [Dong, C., Elsen, S., Swem, L. R. & Bauer, C. E. (2002). J Bacteriol 184, 2805-2814]. The expression of the ppaA gene increases several-fold in response to a decrease in oxygen tension, suggesting that the PpaA protein is active under conditions of low or no oxygen. However, no discernible phenotype of a ppaA null mutant was observed under anaerobic conditions tested thus far. The photosystem gene repressor PpsR mediates repression of ppaA gene expression under aerobic conditions. Sequence analysis of PpaA homologues from several anoxygenic phototrophic bacteria revealed a putative corrinoid-binding domain. It is suggested that PpaA binds a corrinoid cofactor and the availability or structure of this cofactor affects PpaA activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate coherent electron transport through a parallel circuit of two quantum dots (QDs), each of which has a single tunable. energy level. Electrons tunnelling via each dot from the left lead interfere with each other at the right lead. It is shown that due to the quantum interference of tunnelling electrons the double QD device is magnetically polarized by coherent circulation of electrons on the closed path through the dots and the leads. By varying the energy level of each dot one can make the magnetic states of the device be up-, non- or down-polarized. It is shown that for experimentally accessible temperatures and applied biases the magnetic polarization currents Should be sufficiently large to observe with current nanotechnology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esse estudo objetivou investigar, em regime de casa de vegetação, o desempenho fisiológico de duas cultivares jovens e enxertadas de seringueira (Hevea brasiliensis), submetidas à deficiência hídrica e posterior recuperação. Os parâmetros analisados foram o potêncial hídrico foliar (ψw), taxa de sobrevivência e crescimento após reidratação e a fluorescência transiente da clorofila a. Trinta dias após a aclimatação, o déficit hídrico foi iniciado pela supressão total da água até o potencial hídrico (ψw) atingir valores críticos (38 dias), seguido por 30 dias de reidratação. Os dois genótipos (RRIM600 e FX3864) apresentaram um comportamentos semelhantes de redução do ψw com o avanço da supressão hídrica. Entretanto, o genótipo FX3864 mostrou-se mais susceptível ao déficit hídrico comprovado por valores que demonstram deficiência no transporte de elétrons no etapa fotoquímica da fotossíntese e por uma menor taxa de sobrevivência após desidratação e menor crescimento e desenvolvimento após a reidratação. RRIM600 apresentou uma maior tolerância à imposição da supressão hídrica, confirmada pelos valores da maioria dos parâmetros analisados e pelo menor tempo necessário para sua recuperação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae is a useful model organism for studying lead (Pb) toxicity. Yeast cells of a laboratory S. cerevisiae strain (WT strain) were incubated with Pb concentrations up to 1,000 μmol/l for 3 h. Cells exposed to Pb lost proliferation capacity without damage to the cell membrane, and they accumulated intracellular superoxide anion (O2 .−) and hydrogen peroxide (H2O2). The involvement of the mitochondrial electron transport chain (ETC) in the generation of reactive oxygen species (ROS) induced by Pb was evaluated. For this purpose, an isogenic derivative ρ0 strain, lacking mitochondrial DNA, was used. The ρ0 strain, without respiratory competence, displayed a lower intracellular ROS accumulation and a higher resistance to Pb compared to the WT strain. The kinetic study of ROS generation in yeast cells exposed to Pb showed that the production of O2 .− precedes the accumulation of H2O2, which is compatible with the leakage of electrons from the mitochondrial ETC. Yeast cells exposed to Pb displayed mutations at the mitochondrial DNA level. This is most likely a consequence of oxidative stress. In conclusion, mitochondria are an important source of Pb-induced ROS and, simultaneously, one of the targets of its toxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocean acidification, recognized as a major threat to marine ecosystems, has developed into one of the fastest growing fields of research in marine sciences. Several studies on fish larval stages point to abnormal behaviours, malformations and increased mortality rates as a result of exposure to increased levels of CO2. However, other studies fail to recognize any consequence, suggesting species-specific sensitivity to increased levels of CO2, highlighting the need of further research. In this study we investigated the effects of exposure to elevated pCO2 on behaviour, development, oxidative stress and energy metabolism of sand smelt larvae, Atherina presbyter. Larvae were caught at Arrábida Marine Park (Portugal) and exposed to different pCO2 levels (control: ~600μatm, pH=8.03; medium: ~1000μatm, pH=7.85; high: ~1800μatm, pH=7.64) up to 15days, after which critical swimming speed (Ucrit), morphometric traits and biochemical biomarkers were determined. Measured biomarkers were related with: 1) oxidative stress - superoxide dismutase and catalase enzyme activities, levels of lipid peroxidation and DNA damage, and levels of superoxide anion production; 2) energy metabolism - total carbohydrate levels, electron transport system activity, lactate dehydrogenase and isocitrate dehydrogenase enzyme activities. Swimming speed was not affected by treatment, but exposure to increasing levels of pCO2 leads to higher energetic costs and morphometric changes, with larger larvae in high pCO2 treatment and smaller larvae in medium pCO2 treatment. The efficient antioxidant response capacity and increase in energetic metabolism only registered at the medium pCO2 treatment may indicate that at higher pCO2 levels the capacity of larvae to restore their internal balance can be impaired. Our findings illustrate the need of using multiple approaches to explore the consequences of future pCO2 levels on organisms.