928 resultados para ELECTRICAL PROPERTIES
Resumo:
Microwave properties of conductive polymers is crucial because of their wide areas of applications such as coating in reflector antennas, coating in electronic equipments, firequenry selective .surfaces, EMI materials, satellite communication links, microchip antennas, and medical applications. This work involves a comparative study of dielectric properties of selected conducting polymers such as polyaniline. poly(3,4-eth),lenedio.syt2iophene), polvthiophene, polvpvrrole. and pohparaphenylene diazomethine (PPDA) in microwave and DC,fields. The inicrowave properties such as dielectric constant, dielectric loss. absorption coefficient, heating coefficient, skin depth, and conductivity in the microwave frequency (S hand), and DC fields were compared. PEDOT and polccuiiline were found to exhibit excellent properties in DC field and microwave frequencies, which make thein potential materials in many of the alorenientioned applications
Resumo:
dc and ac electrical conductivities, dielectric constant and dielectric loss factor in single crystals of ethylenediammonium dinitrate (EDN) have been measured axiswise as a function of temperature. All the above properties exhibit anomalous variations at 404 K thereby confirming the occurence of a phase transition in EDN at this temperature. Electrical conductivity parameters have been evaluated and possible conduction mechanisms are discussed. The role of protons in electrical trasport phenomenon is established by chemical analysis.
Resumo:
This thesis consists of a study of the effect of electrode films and overlayer films on the electrical properties of certain metal films. The films have been prepared on glass substrates by thermal evapouration in a vaccum 10 terr. The properties of Al films on Ag, Al,Au and Cu films on In electrodes ,and Bi/Ag bilayer films have been studied. The influence of annealing electrodes at higher temperature on the electrical properties of metal films has also been investigated. Further the effect of varying layer thickness in the bilayer films ,both annealed at higher temperature and annealed at room temperature have been examined.
Resumo:
Due to the great versatility of the properties of polymer thin films, special interest has been taken in recent years on their preparation and electrical properties. The present thesis is entirely devoted to the study of the formation, structure and electrical properties of plasma» polymerised polyacrylonitrile (PAN) thin films. Eventhough the studies are confined to a single polymer film, the results in general are applicable to similar polar polymer films.
Resumo:
Investigations on thin films that started decades back due to scientific curiosity in the properties of a two-dimensional solid, has developed into a leading research field in recent years due to the ever expanding applications of the thin films in the fann of a variety of active and passive microminiaturized components and devices, solar cells, radiation sowces and detectors, magnetic memory devices, interference filters, refection and antireflection coatings etc. [1]. The recent environment and energy resource concerns have aroused an enonnous interest in the study of materials in thin film form suitable for renewable energy sources such as photovoltaic devices. Recognition of the immense potential applications of the chalcopyrites that can fonn homojunctions or heterojunctions for solar cell fabrication has attracted many researchers to extensive and intense research on them. In this thesis, we have started with studies performed on CuInSe, thin films, a technologically well recognized compound belonging to the l•ill-VI family of semiconductors and have riveted on investigations on the preparation and characterization of compoWlds Culn3Se5. Culn5Seg and CuIn7Se12, an interesting group of compounds related to CuInSe2 called Ordered Vacancy Compounds, having promising applications in photovoltaic devices. A pioneering work attempted on preparing and characterizing the compound Culn7Sel2 is detailed in the chapters on OVC's. Investigation on valence band splitting in avc's have also been attempted for the first time and included as the last chapter in the thesis. Some of the salient features of the chalcopyrite c.ompounds are given in the next section .of this introductory chapter.
Resumo:
The thesis aims to present the results of the experimental investigations on the electrical properties like electrical conductivity, dielectric constant and ionic thermo~ currents in certain ammonium containing ferroelectric crystals viz. LiNH4SO4, (NH4)2SO4 and (NH4)5H(SO4)2. Special attention has been paid in revealing the mechanisms of electrical conduction in the various phases of these crystals and those asso~ ciated with the different phase transitions occurring in them, by making studies on doped, quenched and deuterated crystals. The report on the observation of two new phase transitions in (NH4) S O2 and of a similar one in ( NH4 ) H (2SO4 ) are included. The relaxation mechanisms of the impurity-vacancy complexes and the space charge phenomena in pure and doped crystals of LiNH4SO4 and (NH4)2SO4 and the observation of a new type of ionic thermo-current viz. Protonic Thermo-Current (PTC) in these crystals are also presented here.
Resumo:
Solid electrolytes for applications like chemical sensing, energy storage, and conversion have been actively investigated and developed since the early sixties. Although of immense potential, solid state protonic conductors have been ignored in comparison with the great interest that has been shown to other ionic conductors like lithium and silver ion conductors. The non-availability of good, stable protonic conductors could be partly the reason for this situation. Although organic solids are better known for their electrical insulating character, ionic conductors of organic origin constitute a recent addition to the class of ionic conductors. However, detailed studies (N1 such conductors are scarce. Also the last decade has witnessed an unprecedented boom in research on organic "conducting polymers". These newly devised materials show conductivity spanning from insulator to metallic regimes, which can be manipulated by appropriate chemical treatment. They find applications in devices ranging from rechargeable batteries to "smart windows". This thesis mainly deals with the synthesis and investigations on the electrical properties of (i) certain organbc protonic conductors derived from ethylenediamine and (ii) substituted polyanilines
Resumo:
Fine particles of lithium ferrite were synthesized by the sol-gel method. By subsequent heat treatment at different temperatures, lithium ferrites of different grain sizes were prepared. A structural characterization of all the samples was conducted by the x-ray diffraction technique. A grain size of around 12 nm was observed for Li0.5Fe2.5O4 obtained through the sol-gel method. Magnetic properties of lithium ferrite nanoparticles with grain size ranging from 12 to 32 nm were studied. Magnetization measurements showed that Li0.5Fe2.5O4 fine particles exhibit a deviation from the predicted magnetic behaviour. The as-prepared sample of lithium ferrite showed a maximum saturation magnetization of 75 emu g−1. Variation of coercivity is attributed to the transition from multi-domain to single domain nature. Dielectric permittivity and ac conductivity of all the samples were evaluated as a function of frequency, temperature and grain size. Variation of permittivity and ac conductivity with frequency reveals that the dispersion is due to the Maxwell–Wagner type interfacial polarization
Resumo:
Fine particles of cobalt ferrite were synthesized by the sol–gel method. Subsequent heat treatment at different temperatures yielded cobalt ferrites having different grain sizes. X-ray diffraction studies were carried out to elucidate the structure of all the samples. Dielectric permittivity and ac conductivity of all the samples were evaluated as a function of frequency, temperature and grain size. The variation of permittivity and ac conductivity with frequency reveals that the dispersion is due to Maxwell–Wagner type interfacial polarization in general, with a noted variation from the expected behaviour for the cold synthesized samples. High permittivity and conductivity for small grains were explained on the basis of the correlated barrier-hopping model
Resumo:
Polyaniline is a widely studied conducting polymer and is a useful material in its bulk and thin film form for many applications, because of its excellent optical and electrical properties. Pristine and iodine doped polyaniline thin films were prepared by a.c. and rf plasma polymerization techniques separately for the comparison of their optical and electrical properties. Doping of iodine was effected in situ. The structural properties of these films were evaluated by FTIR spectroscopy and the optical band gap was estimated from UV-vis-NIR measurements. Comparative studies on the structural, optical and electrical properties of a.c. and rf polymerization are presented here. It has been found that the optical band gap of the polyaniline thin films prepared by rf and a.c. plasma polymerization techniques differ considerably and the band gap is further reduced by in situ doping of iodine. The electrical conductivity measurements on these films show a higher value of electrical conductivity in the case of rf plasma polymerized thin films when compared to the a.c. plasma polymerized films. Also, it is found that the iodine doping enhanced conductivity of the polymer thin films considerably. The results are compared and correlated and have been explained with respect to the different structures adopted under these two preparation techniques
Resumo:
An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values