171 resultados para EJECTA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The very young Wabar craters formed by impact of an iron meteorite and are known to the scientific community since 1933. We describe field observations made during a visit to the Wabar impact site, provide analytical data on the material collected, and combine these data with poorly known information discovered during the recovery of the largest meteorites. During our visit in March 2008, only two craters (Philby-B and 11 m) were visible; Philby-A was completely covered by sand. Mapping of the ejecta field showed that the outcrops are strongly changing over time. Combining information from different visitors with our own and satellite images, we estimate that the large seif dunes over the impact site migrate by approximately 1.0–2.0 m yr␣1 southward. Shock lithification took place even at the smallest, 11 m crater, but planar fractures (PFs) and undecorated planar deformation features (PDFs), as well as coesite and stishovite, have only been found in shock-lithified material from the two larger craters. Shock-lithified dune sand material shows perfectly preserved sedimentary structures including cross-bedding and animal burrows as well as postimpact structures such as open fractures perpendicular to the bedding, slickensides, and radiating striation resembling shatter cones. The composition of all impact melt glasses can be explained as mixtures of aeolian sand and iron meteorite. We observed a partial decoupling of Fe and Ni in the black impact glass, probably due to partitioning of Ni into unoxidized metal droplets. The absence of a Ca-enriched component demonstrates that the craters did not penetrate the bedrock below the sand sheet, which has an estimated thickness of 20–30 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Asteroid 4Vesta seems to be a major intact protoplanet, with a surface composition similar to that of the HED (howardite-eucrite-diogenite) meteorites. The southern hemisphere is dominated by a giant impact scar, but previous impact models have failed to reproduce the observed topography. The recent discovery that Vesta's southern hemisphere is dominated by two overlapping basins provides an opportunity to model Vesta's topography more accurately. Here we report three-dimensional simulations of Vesta's global evolution under two overlapping planet-scale collisions. We closely reproduce its observed shape, and provide maps of impact excavation and ejecta deposition. Spiral patterns observed in the younger basin Rheasilvia, about one billion years old, are attributed to Coriolis forces during crater collapse. Surface materials exposed in the north come from a depth of about 20kilometres, according to our models, whereas materials exposed inside the southern double-excavation come from depths of about 60-100kilometres. If Vesta began as a layered, completely differentiated protoplanet, then our model predicts large areas of pure diogenites and olivine-rich rocks. These are not seen, possibly implying that the outer 100kilometres or so of Vesta is composed mainly of a basaltic crust (eucrites) with ultramafic intrusions (diogenites).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is contested that the mineral dust found in Greenlandic ice cores during the Holocene stems from multiple source areas. Particles entrained above a more productive, primary source dominate the signal’s multi-seasonal average. Data in sub-annual resolution, however, reveal at least one further source. Whereas distinct inputs from the primary source are visible in elevated concentration levels, various inputs of the secondary source(s) are reflected by multiple maxima in the coarse particle percentage. As long as the dust sources’ respective seasonal cycles are preserved, primary and secondary source can be distinguished. Since the two source’s ejecta eventually detected differ in size, which can be attributed to a change in atmospheric residence times, it is suggested that the secondary source is located in closer proximity to the drilling site than the primary one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solid-state-physics technique of electron spin resonance (ESR) has been employed in an exploratory study of marine limestones and impact-related deposits from Cretaceous-Tertiary (KT) boundary sites including Spain (Sopelana and Caravaca), New Jersey (Bass River), the U.S. Atlantic continental margin (Blake Nose, ODP Leg 171B/1049/A), and several locations in Belize and southern Mexico within -600 km of the Chicxulub crater. The ESR spectra of SO3(1-) (a radiation-induced point defect involving a sulfite ion substitutional for CO3(2-) which has trapped a positive charge) and Mn(2+) in calcite were singled out for analysis because they are unambiguously interpretable and relatively easy to record. ESR signal strengths of calcite-related SO3(1-) and Mn(2+) have been studied as functions of stratigraphic position in whole-rock samples across the KT boundary at Sopelana, Caravaca, and Blake Nose. At all three of these sites, anomalies in SO3(1-) and/or Mn(2+) intensities are noted at the KT boundary relative to the corresponding background levels in the rocks above and below. At Caravaca, the SO3(1-) background itself is found to be lower by a factor of 2.7 in the first 30,000 years of the Tertiary relative to its steady-state value in the last 15,000 years of the Cretaceous, indicating either an abrupt and quasi-permanent change in ocean chemistry (or temperature) or extinction of the marine biota primarily responsible for fixing sulfite in the late Cretaceous limestones. An exponential decrease in the Mn(2+) concentration per unit mass calcite, [Mn(2+)], as the KT boundary at Caravaca is approached from below (1/e characteristic length =1.4 cm) is interpreted as a result of post-impact leaching of the seafloor. Absolute ESR quantitative analyses of proximal impact deposits from Belize and southern Mexico group naturally into three distinct fields in a twodimensional [SO3(1-)]-versus-[Mn(2+)] scatter plot. These fields contain (I) limestone ejecta clasts, (II) accretionary lapilli, and (III) a variety of SO3(1-) -depleted/Mn(2+) enriched impact deposits. Data for the investigated non-impact-related Cretaceous and Tertiary marine limestones (Spain and Blake Nose) fall outside of these three fields. With reference to thes enon-impact deposits, fields I, II, and III can be respectively characterized as Mn(2+) -depleted, SO3(1-) -enhanced, and SO3(1-) -depleted. It is proposed that (1) field I represents calcites from the Yucatin Platform, and that the Mn(2+) -depleted signature can be used as an indicator of primary Chicxulub ejecta in deep marine environments and (2) field II represents calcites that include a component formed in the vapor plume, either from condensation in the presence of CO2/SO3(1-) -rich vapors, or reactions between CaO and CO2/SO3 rich vapors, and that this SO3(1-) -enhanced signature can be used as an indicator of impact vapor plume deposits. Given these two propositions, the ESR data for the Blake Nose deposits are ascribed to the presence of basal coarse calcitic Chicxulub ejecta clasts, while the finer components that are increasingly represented toward the top are interpreted to contain high- SO3(1-) calcite from the vapor plume. The apparently-undisturbed Bass River deposit may contain even higher concentrations of vapor-plume calcite. None of the three components included in field III appear to be represented at distal, deep marine KT-boundary sites; this field may include several types of impact-related deposits of diverse origins and diagenetic histories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The precise cause and timing of the Cretaceous-Paleocene (K-P) mass extinction 65 Ma ago remains a matter of debate. Many advocate that the extinction was caused by a meteorite impact at Chicxulub, Mexico, and a number of potential kill-mechanisms have been proposed for this. Although we now have good constraints on the size of this impact and chemistry of the target rocks, estimates of its environmental consequences are hindered by a lack of knowledge about the obliquity of this impact. An oblique impact is likely to have been far more catastrophic than a sub-vertical one, because greater volumes of volatiles would have been released into the atmosphere. The principal purpose of this study was to characterize shocked quartz within distal K-P ejecta, to investigate whether the quartz distribution carried a signature of the direction and angle of impact. Our analyses show that the total number, maximum and average size of shocked quartz grains all decrease gradually with paleodistance from Chicxulub. We do not find particularly high abundances in Pacific sites relative to Atlantic and European sites, as has been previously reported, and the size-distribution around Chicxulub is relatively symmetric. Ejecta samples at any one site display features that are indicative of a wide range of shock pressures, but the mean degree of shock increases with paleodistance. These shock- and size-distributions are both consistent with the K-P layer having been formed by a single impact at Chicxulub. One site in the South Atlantic contains quartz indicating an anomalously high average shock degree, that may be indicative of an oblique impact with an uprange direction to the southeast +/- 45°. The apparent continuous coverage of proximal ejecta in this quadrant of the crater, however, suggests a relatively high impact angle of >45°. We conclude that some of the more extreme predictions of the environmental consequences of a low-angle impact at Chicxulub are probably not applicable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At Ocean Drilling Program Site 689 (Maud Rise, Southern Ocean), d18O records of fine-fraction bulk carbonate and benthic foraminifers indicate that accelerated climate cooling took place following at least two closely spaced early late Eocene extraterrestrial impact events. A simultaneous surface-water productivity increase, as interpreted from d13C data, is explained by enhanced water-column mixing due to increased latitudinal temperature gradients. These isotope data appear to be in concert with organic-walled dinoflagellate-cyst records across the same microkrystite-bearing impact-ejecta layer in the mid-latitude Massignano section (central Italy). In particular, the strong abundance increase of Thalassiphora pelagica is interpreted to indicate cooling or increased productivity at Massignano. Because impact-induced cooling processes are active on time scales of a few years at most, the estimated 100 k.y. duration of the cooling event appears to be too long to be explained by impact scenarios alone. This implies that a feedback mechanism, such as a global albedo increase due to extended snow and ice cover, may have sustained impact-induced cooling for a longer time after the impacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ocean Drilling Program (ODP) Site 959 was drilled in the northern border of the Côte d'Ivoire-Ghana Ridge at a water depth of 2100 m. Pleistocene total thickness does not exceed 20 m. Winnowing processes resulted in a low accumulation rate and notable stratigraphic hiatuses. During the Late Pleistocene, bottom circulation was very active and controlled laminae deposition (contourites) which increased the concentration of glauconitic infillings of foraminifera, and of volcanic glass and blue-green grains more rarely, with one or several subordinate ferromagnesian silicates. Volcanic glass generally was X-ray amorphous and schematically classified as basic to intermediate (44-60% SiO2). Opal-A or opal-CT suggested the beginning of the palagonitisation process, and previous smectitic deposits may have been eroded mechanically. The blue-green grains presented two main types of mineralogic composition: (1) neoformed K, Fe-smectite associated with zeolite (like phillipsite) and unequal amounts of quartz and anorthite; (2) feldspathic grains dominated by albite but including quartz, volcanic glass and smectites as accessory components. They were more or less associated with the volcanic glass. On the basis of their chemical composition, the genetic relationship between the blue-green grains and the volcanic glass seemed to be obvious although some heterogeneous grains seemed to be primary ignimbrite and not the result of glass weathering. The most reasonable origin of these pyroclastic ejecta would be explosive events from the Cameroon Volcanic Ridge, especially from the Sao Thome and Principe Islands and Mount Cameroon area. This is supported both by grain geochemistry and the time of volcanic activity, i.e. Pleistocene. After westward wind transport (some 1200 km) and ash fall-out, the subsequent winnowing by bottom currents controlled the concentration of the volcanic grains previously disseminated inside the hemipelagic sediment. Palagonitisation, and especially phillipsite formation, may result from a relatively rapid reaction during burial diagenesis (<1 m.y.), in deep-sea deposits at relatively low sedimentation rate. However, it cannot be excluded that the weathering had begun widely on the Cameroon Ridge before the explosive event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Late Eocene microtektites and crystal-bearing microkrystites extracted from DSDP and ODP cores from the Atlantic, Pacific, and Indian oceans have been analyzed to address their provenance. A new analysis of Nd and Sr isotopic compositions confirms previous work and the assignment of the uppermost microtektite layer to the North American tektites, which are associated with the 35.5 Ma, 85 km diameter Chesapeake impact structure of Virginia, USA. Extensive major element and Nd and Sr isotopic analyses of the microkrystites from the lowermost layer were obtained. The melanocratic microkrystites from Sites 216 and 462 in the Indian and Pacific oceans possess major element chemistries, Sr and Nd isotopic signatures and Sm-Nd, T CHUR, model ages similar to those of tagamite melt rocks in the Popigai impact structure. They also possess Rb-Sr, T UR, model ages that are younger than the tagamite TCHUR ages by up to ~1 Ga, which require a process, as yet undefined, of Rb/Sr enrichment. These melanocratic microkrystites are consistent with a provenance from the 35.7 Ma, 100 km diameter Popigai impact structure of Siberia, Russia, while ruling out other contemporaneous structures as a source. Melanocratic microkrystites from other sites and leucocratic microkrystites from all sites possess a wide range of isotopic compositions (epsilon (143Nd) values of -16 to -27.7 and epsilon (87Sr) values of 4.1-354.0), making the association with Popigai tagamites less clear. These microkrystites may have been derived by the melting of target rocks of mixed composition, which were ejected without homogenization. Dark glass and felsic inclusions extracted from Popigai tagamites possess epsilon (143Nd) and epsilon (87Sr) values of -26.7 to -27.8 and 374.7 and 432.4, respectively, and T CHUR and T UR model ages of 1640-1870 Ma and 240-1830 Ma, respectively, which require the preservation of initially present heterogeneity in the source materials. The leucocratic microkrystites possess diverse isotopic compositions that may reflect the melting of supra-basement sedimentary rocks from Popigai, or early basement melts that were ejected prior to homogenization of the Popigai tagamites. The ejection of melt rocks with chemistries consistent with a basement provenance, rather than the surface ~1 km of sedimentary cover rocks, atypically indicates a non-surficial source to some of the ejecta. Microkrystites from two adjacent biozones possess statistically indistinguishable major element compositions, suggesting they have a single source. The occurrence of microkrystites derived from a single impact event, but in different biozones, can be explained by: (1) diachronous biozone boundaries; (2) post-accumulation sedimentary reworking; or (3) erroneous biozonation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples from Ocean Drilling Program Hole 761C, collected on both sides of the Cretaceous/Tertiary boundary have been analyzed for their chemical and mineralogical content. The sediment consists of nannofossil ooze with variable amounts of clay. The boundary is marked by a color change associated with a nearly step-like decrease of the carbonate fraction. Paleomagnetic data and the drop of the carbonate content indicate that a strong reduction of the sedimentation rate occurred at the boundary and persisted for million of years. An iridium anomaly of 80 ng/cm**2, together with overabundances of Cr and Fe, are found in close coincidence with the planktonic crisis. These enrichments can be explained by the infall of =0.16 g/cm2 of Cl-like chondritic material. Co and Ni enrichments and a great quantity of Ni-rich magnetites are also observed in the basal Danian. These elements and minerals excepted, the composition of the insoluble fraction appears to be nearly unchanged across the boundary. Chemical and mineralogical observations support a cosmic origin for the Cretaceous/Tertiary event but do not reveal the presence of any significant impact ejecta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New data on Ru/Ir abundance ratios are presented for nonmarine (Hell Creek, Montana; Frenchman River, Saskatchewan) and marine Cretaceous-Tertiary boundary sites (Brazos River, Texas; Beloc, Haiti; DSDP 577 and DSDP 596). The Ru/Ir ratio varies from 0.5 to 1 within 4000 km of Chicxulub and increases to 2-3 at paleodistances (65 Ma) of up to 12,000 km from the impact site. For CI chondrites, Ru/Ir = 1.5. A ballistic model of ejecta cloud cooling and expansion, which employs the available vapor-pressure versus temperature data for Ru and It, predicts qualitatively similar global variation in the Ru/Ir ratio but by only a factor of 1.5. We infer that several other factors, such as remobilization of PGE during diagenesis, preferential oxidation of Ru, condensation kinetics and atmospheric chemical and circulation processes, may account for the observed larger Ru/Ir variation.