768 resultados para EDIcat5-DSR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Gefitinib is active in patients with pretreated non-small-cell lung cancer (NSCLC). We evaluated the activity and toxicity of gefitinib first-line treatment in advanced NSCLC followed by chemotherapy at disease progression. PATIENTS AND METHODS: In all, 63 patients with chemotherapy-naive stage IIIB/IV NSCLC received gefitinib 250 mg/day. At disease progression, gefitinib was replaced by cisplatin 80 mg/m(2) on day 1 and gemcitabine 1250 mg/m(2) on days 1, 8 for up to six 3-week cycles. Primary end point was the disease stabilization rate (DSR) after 12 weeks of gefitinib. RESULTS: After 12 weeks of gefitinib, the DSR was 24% and the response rate (RR) was 8%. Median time to progression (TtP) was 2.5 months and median overall survival (OS) 11.5 months. Never smokers (n = 9) had a DSR of 56% and a median OS of 20.2 months; patients with epidermal growth factor receptor (EGFR) mutation (n = 4) had a DSR of 75% and the median OS was not reached after the follow-up of 21.6 months. In all, 41 patients received chemotherapy with an overall RR of 34%, DSR of 71% and median TtP of 6.7 months. CONCLUSIONS: First-line gefitinib monotherapy led to a DSR of 24% at 12 weeks in an unselected patients population. Never smokers and patients with EGFR mutations tend to have a better outcome; hence, further trials in selected patients are warranted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complexity and challenge created by asphalt material motivates researchers and engineers to investigate the behavior of this material to develop a better understanding, and improve the performance of asphalt pavement. Over decades, a wide range of modification at macro, meso, micro and nano scales have been conducted to improve the performance of asphalt pavement. This study was initiated to utilize the newly developed asphalt modifier pellets. These pellets consisted of different combinations of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE) and titanate coupling agent (CA) to improve the asphalt binder as well as pavement performance across a wide range of temperature and loading pace. These materials were used due to their unique characteristics and promising findings from various industries, especially as modifiers in pavement material. The challenge is to make sure the CaCO3 disperses very well in the mixture. The rheological properties of neat asphalt binder PG58-28 and modified asphalt binder (PG58-28/LLDPE, PG58-28/CaCO3, PG58-28/CaCO3/LLDPE, and PG58-28/CaCO3/LLDPE/CA), were determined using rotational viscometer (RV) test, dynamic shear rheometer (DSR) test and bending beam rheometer test. In the DSR test, the specimens were evaluated using frequency sweep and multiple shear creep recovery (MSCR). The asphalt mixtures (aggregate/PG58-28, aggregate/ PG58-28/LLDPE, aggregate/PG58-28/CaCO3, aggregate/PG58-28/LLDPE/CaCO3 and aggregate/PG58-28/LLDPE/CaCO3/CA) were evaluated using the four point beam fatigue test, the dynamic modulus (E*) test, and tensile strength test (to determines tensile strength ratio, TSR). The RV test results show that all modified asphalt binders have a higher viscosity compared to the neat asphalt binder (PG58-28). Based on the Jnr results (using MSCR test), all the modified asphalt binders have a better resistance to rutting compared to the neat asphalt binder. A higher modifier contents have resulted in a better recovery percentage of asphalt binder (higher resistance to rutting), except the specimens prepared using PECC’s modified asphalt binder (PG58-28/CaCO3/LLDPE). The BBR test results show that all the modified asphalt binders have shown comparable performance in term of resistance to low temperature cracking, except the specimen prepared using the LLDPE modifier. Overall, 5 wt% LLDPE modified asphalt binder was found to be the best asphalt binder in terms of resistance to rutting. Meanwhile, 3 wt% PECC-1CA’s modified asphalt binder can be considered as the best (in terms of resistance to thermal cracking) with the lowest mean critical cracking temperature. The appearance of CaCO3 was found useful merely in improving the resistance to fatigue cracking of asphalt mixture. However, application of LLDPE has undermined the fatigue life of asphalt mixtures. Adding LLDPE and coupling agent throughout this study does not sufficiently help in terms of elastic behavior which essential to enhance the resistance to fatigue cracking. In contrast, application of LLDPE has increased the indirect tensile strength values and TSR of asphalt mixtures, indicates a better resistance to moisture damage. The usage of the coupling agent does not change the behavior of the asphalt mixture, which could be due to imbalance effects resulted by combination of LLDPE and CaCO3 in asphalt binder. Further investigations without incorporating CaCO3 should be conducted further. To investigate the feasibility of using LLDPE and coupling agent as modifiers in asphalt pavements, more research should be conducted on different percentages of LLDPE (less than 3 wt%), and at the higher and w wider range of coupling agent content, from 3 wt% to 7 wt% based on the polymer mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the issue of matching statistical and non-rigid shapes, and introduces an Expectation Conditional Maximization-based deformable shape registration (ECM-DSR) algorithm. Similar to previous works, we cast the statistical and non-rigid shape registration problem into a missing data framework and handle the unknown correspondences with Gaussian Mixture Models (GMM). The registration problem is then solved by fitting the GMM centroids to the data. But unlike previous works where equal isotropic covariances are used, our new algorithm uses heteroscedastic covariances whose values are iteratively estimated from the data. A previously introduced virtual observation concept is adopted here to simplify the estimation of the registration parameters. Based on this concept, we derive closed-form solutions to estimate parameters for statistical or non-rigid shape registrations in each iteration. Our experiments conducted on synthesized and real data demonstrate that the ECM-DSR algorithm has various advantages over existing algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of crystal chemistry and melt composition on the control of clinopyroxene/melt element partitioning (D) during the assimilation of olivine/peridotite by felsic magma have been investigated in Mesozoic high-Mg diorites from North China. The assimilation resulted in significant increase of Mg, Cr and Ni and only slight (< 30%) decrease of incompatible elements of the magma, and the compositional variations have been mirrored by the normally and reversely zoned clinopyroxene microphenocrysts formed at the early stage of the magma evolution. The Mg# [100 × Mg / (Mg + Fe)] values of the reversely zoned clinopyroxenes increase from 65 to 75 in the core to 85–90 in the high-Mg midsection, and reduce back to 73–79 at the rim. Trace element profiles across all these clinopyroxene domains have been measured by LA-ICP-MS. The melt trace element composition has been constrained from bulk rock analyses of the fine-grained low- and high-Mg diorites. Clinopyroxene/melt partition coefficients for rare earth elements (REE) and Y in the high-Mg group zonings (Mg# > 73–79, DDy < 1.2) are positively correlated with tetrahedral IVAl and increase by a factor of 3–4 as tetrahedral IVAl increases from 0.01 to 0.1 per formula unit (pfu). These systematic variations are interpreted to be controlled by the clinopyroxene composition. In contrast, partition coefficients for low-Mg group zonings (Mg# < 75–79, DDy > 1.2) are elevated by up to an order of magnitude (for REE and Y) or more (for Zr and Hf) at similar IVAl, indicating dominant control of melt composition/structure. DZr and DHf show a larger sensitivity to the compositional change of crystal and melt than DREE. DTi values for the low- and high-Mg zonings show a uniform dependence on IVAl. DSr and DLi are insensitive to the compositional change of clinopyroxene and melt, resulting in Sr depletions in the clinopyroxene zonings with elevated REE without crystallization of plagioclase. Our observations show that crystal chemistry and melt composition/structure may alternatively control clinopyroxene/melt partitioning during the assimilation of peridotite by felsic magma, and may be useful for deciphering clinopyroxene compositions and related crust–mantle processes.