950 resultados para Dynamic programming (DP)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we are concerned with finding the maximum throughput that a mobile ad hoc network can support. Even when nodes are stationary, the problem of determining the capacity region has long been known to be NP-hard. Mobility introduces an additional dimension of complexity because nodes now also have to decide when they should initiate route discovery. Since route discovery involves communication and computation overhead, it should not be invoked very often. On the other hand, mobility implies that routes are bound to become stale resulting in sub-optimal performance if routes are not updated. We attempt to gain some understanding of these effects by considering a simple one-dimensional network model. The simplicity of our model allows us to use stochastic dynamic programming (SDP) to find the maximum possible network throughput with ideal routing and medium access control (MAC) scheduling. Using the optimal value as a benchmark, we also propose and evaluate the performance of a simple threshold-based heuristic. Unlike the optimal policy which requires considerable state information, the heuristic is very simple to implement and is not overly sensitive to the threshold value used. We find empirical conditions for our heuristic to be near-optimal as well as network scenarios when our simple heuristic does not perform very well. We provide extensive numerical and simulation results for different parameter settings of our model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design and operation of the minimum cost classifier, where the total cost is the sum of the measurement cost and the classification cost, is computationally complex. Noting the difficulties associated with this approach, decision tree design directly from a set of labelled samples is proposed in this paper. The feature space is first partitioned to transform the problem to one of discrete features. The resulting problem is solved by a dynamic programming algorithm over an explicitly ordered state space of all outcomes of all feature subsets. The solution procedure is very general and is applicable to any minimum cost pattern classification problem in which each feature has a finite number of outcomes. These techniques are applied to (i) voiced, unvoiced, and silence classification of speech, and (ii) spoken vowel recognition. The resulting decision trees are operationally very efficient and yield attractive classification accuracies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the spectral zero-crossing rate (SZCR) properties of transient signals and show that SZCR contains accurate localization information about the transient. For a train of pulses containing transient events, the SZCR computed on a sliding window basis is useful in locating the impulse locations accurately. We present the properties of SZCR on standard stylized signal models and then show how it may be used to estimate the epochs in speech signals. We also present comparisons with some state-of-the-art techniques that are based on the group-delay function. Experiments on real speech show that the proposed SZCR technique is better than other group-delay-based epoch detectors. In the presence of noise, a comparison with the zero-frequency filtering technique (ZFF) and Dynamic programming projected Phase-Slope Algorithm (DYPSA) showed that performance of the SZCR technique is better than DYPSA and inferior to that of ZFF. For highpass-filtered speech, where ZFF performance suffers drastically, the identification rates of SZCR are better than those of DYPSA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Latent variable methods, such as PLCA (Probabilistic Latent Component Analysis) have been successfully used for analysis of non-negative signal representations. In this paper, we formulate PLCS (Probabilistic Latent Component Segmentation), which models each time frame of a spectrogram as a spectral distribution. Given the signal spectrogram, the segmentation boundaries are estimated using a maximum-likelihood approach. For an efficient solution, the algorithm imposes a hard constraint that each segment is modelled by a single latent component. The hard constraint facilitates the solution of ML boundary estimation using dynamic programming. The PLCS framework does not impose a parametric assumption unlike earlier ML segmentation techniques. PLCS can be naturally extended to model coarticulation between successive phones. Experiments on the TIMIT corpus show that the proposed technique is promising compared to most state of the art speech segmentation algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epoch is defined as the instant of significant excitation within a pitch period of voiced speech. Epoch extraction continues to attract the interest of researchers because of its significance in speech analysis. Existing high performance epoch extraction algorithms require either dynamic programming techniques or a priori information of the average pitch period. An algorithm without such requirements is proposed based on integrated linear prediction residual (ILPR) which resembles the voice source signal. Half wave rectified and negated ILPR (or Hilbert transform of ILPR) is used as the pre-processed signal. A new non-linear temporal measure named the plosion index (PI) has been proposed for detecting `transients' in speech signal. An extension of PI, called the dynamic plosion index (DPI) is applied on pre-processed signal to estimate the epochs. The proposed DPI algorithm is validated using six large databases which provide simultaneous EGG recordings. Creaky and singing voice samples are also analyzed. The algorithm has been tested for its robustness in the presence of additive white and babble noise and on simulated telephone quality speech. The performance of the DPI algorithm is found to be comparable or better than five state-of-the-art techniques for the experiments considered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global change in climate and consequent large impacts on regional hydrologic systems have, in recent years, motivated significant research efforts in water resources modeling under climate change. In an integrated future hydrologic scenario, it is likely that water availability and demands will change significantly due to modifications in hydro-climatic variables such as rainfall, reservoir inflows, temperature, net radiation, wind speed and humidity. An integrated regional water resources management model should capture the likely impacts of climate change on water demands and water availability along with uncertainties associated with climate change impacts and with management goals and objectives under non-stationary conditions. Uncertainties in an integrated regional water resources management model, accumulating from various stages of decision making include climate model and scenario uncertainty in the hydro-climatic impact assessment, uncertainty due to conflicting interests of the water users and uncertainty due to inherent variability of the reservoir inflows. This paper presents an integrated regional water resources management modeling approach considering uncertainties at various stages of decision making by an integration of a hydro-climatic variable projection model, a water demand quantification model, a water quantity management model and a water quality control model. Modeling tools of canonical correlation analysis, stochastic dynamic programming and fuzzy optimization are used in an integrated framework, in the approach presented here. The proposed modeling approach is demonstrated with the case study of the Bhadra Reservoir system in Karnataka, India.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we study risk-sensitive control problem with controlled continuous time Markov chain state dynamics. Using multiplicative dynamic programming principle along with the atomic structure of the state dynamics, we prove the existence and a characterization of optimal risk-sensitive control under geometric ergodicity of the state dynamics along with a smallness condition on the running cost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the development and application of a stochastic dynamic programming model with fuzzy state variables for irrigation of multiple crops. A fuzzy stochastic dynamic programming (FSDP) model is developed in which the reservoir storage and soil moisture of the crops are considered as fuzzy numbers, and the reservoir inflow is considered as a stochastic variable. The model is formulated with an objective of minimizing crop yield deficits, resulting in optimal water allocations to the crops by maintaining storage continuity and soil moisture balance. The standard fuzzy arithmetic method is used to solve all arithmetic equations with fuzzy numbers, and the fuzzy ranking method is used to compare two or more fuzzy numbers. The reservoir operation model is integrated with a daily-based water allocation model, which results in daily temporal variations of allocated water, soil moisture, and crop deficits. A case study of an existing Bhadra reservoir in Karnataka, India, is chosen for the model application. The FSDP is a more realistic model because it considers the uncertainty in discretization of state variables. The results obtained using the FSDP model are found to be more acceptable for the case study than those of the classical stochastic dynamic model and the standard operating model, in terms of 10-day releases from the reservoir and evapotranspiration deficit. (C) 2015 American Society of Civil Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we study the well-known r-DIMENSIONAL k-MATCHING ((r, k)-DM), and r-SET k-PACKING ((r, k)-SP) problems. Given a universe U := U-1 ... U-r and an r-uniform family F subset of U-1 x ... x U-r, the (r, k)-DM problem asks if F admits a collection of k mutually disjoint sets. Given a universe U and an r-uniform family F subset of 2(U), the (r, k)-SP problem asks if F admits a collection of k mutually disjoint sets. We employ techniques based on dynamic programming and representative families. This leads to a deterministic algorithm with running time O(2.851((r-1)k) .vertical bar F vertical bar. n log(2)n . logW) for the weighted version of (r, k)-DM, where W is the maximum weight in the input, and a deterministic algorithm with running time O(2.851((r-0.5501)k).vertical bar F vertical bar.n log(2) n . logW) for the weighted version of (r, k)-SP. Thus, we significantly improve the previous best known deterministic running times for (r, k)-DM and (r, k)-SP and the previous best known running times for their weighted versions. We rely on structural properties of (r, k)-DM and (r, k)-SP to develop algorithms that are faster than those that can be obtained by a standard use of representative sets. Incorporating the principles of iterative expansion, we obtain a better algorithm for (3, k)-DM, running in time O(2.004(3k).vertical bar F vertical bar . n log(2)n). We believe that this algorithm demonstrates an interesting application of representative families in conjunction with more traditional techniques. Furthermore, we present kernels of size O(e(r)r(k-1)(r) logW) for the weighted versions of (r, k)-DM and (r, k)-SP, improving the previous best known kernels of size O(r!r(k-1)(r) logW) for these problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fuel optimal nonlinear sub-optimal guidance scheme is presented in this paper for soft landing of a lunar craft during the powered descent phase. The recently developed Generalized Model Predictive Static Programming (G-MPSP) is used to compute the required magnitude and angle of the thrust vector. Both terminal position and velocity vector are imposed as hard constraints, which ensures high position accuracy and facilitates initiation of vertical descent at the end of the powered descent phase. A key feature of the G-MPSP algorithm is that it converts the nonlinear dynamic programming problem into a low-dimensional static optimization problem (of the same dimension as the output vector). The control history update is done in closed form after computing a time-varying weighting matrix through a backward integration process. This feature makes the algorithm computationally efficient, which makes it suitable for on-board applications. The effectiveness of the proposed guidance algorithm is demonstrated through promising simulation results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[ES] La programación dinámica es un método de optimización de sistemas o de su representación matemática, donde se opera por fases, es decir, las decisiones se toman en forma secuencial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a new method for local key and chord estimation from audio signals. This method relies primarily on principles from music theory, and does not require any training on a corpus of labelled audio files. A harmonic content of the musical piece is first extracted by computing a set of chroma vectors. A set of chord/key pairs is selected for every frame by correlation with fixed chord and key templates. An acyclic harmonic graph is constructed with these pairs as vertices, using a musical distance to weigh its edges. Finally, the sequences of chords and keys are obtained by finding the best path in the graph using dynamic programming. The proposed method allows a mutual chord and key estimation. It is evaluated on a corpus composed of Beatles songs for both the local key estimation and chord recognition tasks, as well as a larger corpus composed of songs taken from the Billboard dataset.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.

The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.

We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coincidence and common fixed point theorems for a class of Suzuki hybrid contractions involving two pairs of single-valued and multivalued maps in a metric space are obtained. In addition, the existence of a common solution for a certain class of functional equations arising in a dynamic programming is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho apresentamos as etapas para a utilização do método da Programação Dinâmica, ou Princípio de Otimização de Bellman, para aplicações de controle ótimo. Investigamos a noção de funções de controle de Lyapunov (FCL) e sua relação com a estabilidade de sistemas autônomos com controle. Uma função de controle de Lyapunov deverá satisfazer a equação de Hamilton-Jacobi-Bellman (H-J-B). Usando esse fato, se uma função de controle de Lyapunov é conhecida, será então possível determinar a lei de realimentação ótima; isto é, a lei de controle que torna o sistema globalmente assintóticamente controlável a um estado de equilíbrio. Como aplicação, apresentamos uma modelagem matemática adequada a um problema de controle ótimo de certos sistemas biológicos. Este trabalho conta também com um breve histórico sobre o desenvolvimento da Teoria de Controle de forma a ilustrar a importância, o progresso e a aplicação das técnicas de controle em diferentes áreas ao longo do tempo.