907 resultados para Dynamic Input-Output Balance
Resumo:
In recent years, the analysis of trade in value added has been explored by many researchers. Although they have made important contributions by developing GVC-related indices and proposing techniques for decomposing trade data, they have not yet explored the method of value chain mapping—a core element of conventional value chain analysis. This paper introduces a method of value chain mapping that uses international input-output data and reveals both upstream and downstream transactions of goods and services induced by production activities of a specific commodity or industry. This method is subsequently applied to the agricultural value chain of three Greater Mekong Sub-region countries (i.e., Thailand, Vietnam, and Cambodia). The results show that the agricultural value chain has been increasingly internationalized, although there is still room for obtaining benefits from GVC participation, especially in a country such as Cambodia.
Resumo:
La tesi analizza il modello Input-Output, introdotto da Leontief nel 1936, per studiare la reazione dei sistemi industriali di Germania, Spagna ed Italia alle restrizioni imposte dai governi per limitare la diffusione della pandemia da COVID-19. Si studiano le economie considerando gli scambi tra i settori produttivi intermedi e la domanda finale. La formulazione originale del modello necessita diverse modifiche per descrivere realisticamente le reti di produzione e comunque non è del tutto esaustiva in quanto si ipotizza che la produttività dei sistemi sia sempre tale da soddisfare pienamente la domanda che giunge per il prodotto emesso. Perciò si introduce una distinzione tra le variabili del problema, assumendo che alcune componenti di produzione siano indipendenti dalla richiesta e che altre componenti siano endogene. Le soluzioni di questo sistema tuttavia non sempre risultano appartenenti al dominio di definizione delle variabili. Dunque utilizzando tecniche di programmazione lineare, si osservano i livelli massimi di produzione e domanda corrisposta in un periodo di crisi anche quando i sistemi non raggiungono questa soglia poiché non pienamente operativi. Si propongono diversi schemi di razionamento per distribuire tra i richiedenti i prodotti emessi: 1) programma proporzionale in base alle domande di tutti i richiedenti; 2) programma proporzionale in base alle richieste, con precedenza ai settori intermedi; 3) programma prioritario in cui vengono riforniti i settori intermedi in base alla dimensione dell’ordine; 4) programma prioritario con fornitura totale degli ordini e ordine di consegna casuale. I risultati ottenuti dipendono dal modello di fornitura scelto, dalla dimensione dello shock cui i settori sono soggetti e dalle proprietà della rete industriale, descritta come grafo pesato.
Resumo:
This work deals with the nonlinear piezoelectric coupling in vibration-based energy harvesting, done by A. Triplett and D.D. Quinn in J. of Intelligent Material Syst. and Structures (2009). In that paper the first order nonlinear fundamental equation has a three dimensional state variable. Introducing both observable and control variables in such a way the controlled system became a SISO system, we can obtain as a corollary that for a particular choice of the observable variable it is possible to present an explicit functional relation between this variable one, and the variable representing the charge harvested. After-by observing that the structure in the Input-Output decomposition essentially changes depending on the relative degree changes, presenting bifurcation branches in its zero dynamics-we are able in to identify this type of bifurcation indicating its close relation with the Hartman - Grobman theorem telling about decomposition into stable and the unstable manifolds for hyperbolic points.
Resumo:
A brief introduction into the theory of differential inclusions, viability theory and selections of set valued mappings is presented. As an application the implicit scheme of the Leontief dynamic input-output model is considered.
Resumo:
This paper presents a predictive optimal matrix converter controller for a flywheel energy storage system used as Dynamic Voltage Restorer (DVR). The flywheel energy storage device is based on a steel seamless tube mounted as a vertical axis flywheel to store kinetic energy. The motor/generator is a Permanent Magnet Synchronous Machine driven by the AC-AC Matrix Converter. The matrix control method uses a discrete-time model of the converter system to predict the expected values of the input and output currents for all the 27 possible vectors generated by the matrix converter. An optimal controller minimizes control errors using a weighted cost functional. The flywheel and control process was tested as a DVR to mitigate voltage sags and swells. Simulation results show that the DVR is able to compensate the critical load voltage without delays, voltage undershoots or overshoots, overcoming the input/output coupling of matrix converters.
Resumo:
In previous work we have applied the environmental multi-region input-output (MRIO) method proposed by Turner et al (2007) to examine the ‘CO2 trade balance’ between Scotland and the Rest of the UK. In McGregor et al (2008) we construct an interregional economy-environment input-output (IO) and social accounting matrix (SAM) framework that allows us to investigate methods of attributing responsibility for pollution generation in the UK at the regional level. This facilitates analysis of the nature and significance of environmental spillovers and the existence of an environmental ‘trade balance’ between regions. While the existence of significant data problems mean that the quantitative results of this study should be regarded as provisional, we argue that the use of such a framework allows us to begin to consider questions such as the extent to which a devolved authority like the Scottish Parliament can and should be responsible for contributing to national targets for reductions in emissions levels (e.g. the UK commitment to the Kyoto Protocol) when it is limited in the way it can control emissions, particularly with respect to changes in demand elsewhere in the UK. However, while such analysis is useful in terms of accounting for pollution flows in the single time period that the accounts relate to, it is limited when the focus is on modelling the impacts of any marginal change in activity. This is because a conventional demand-driven IO model assumes an entirely passive supply-side in the economy (i.e. all supply is infinitely elastic) and is further restricted by the assumption of universal Leontief (fixed proportions) technology implied by the use of the A and multiplier matrices. In this paper we argue that where analysis of marginal changes in activity is required, a more flexible interregional computable general equilibrium approach that models behavioural relationships in a more realistic and theory-consistent manner, is more appropriate and informative. To illustrate our analysis, we compare the results of introducing a positive demand stimulus in the UK economy using both IO and CGE interregional models of Scotland and the rest of the UK. In the case of the latter, we demonstrate how more theory consistent modelling of both demand and supply side behaviour at the regional and national levels affect model results, including the impact on the interregional CO2 ‘trade balance’.
Resumo:
Infolge der durch die internationalen Schulvergleichstests eingeleiteten empirischen Wende in der Erziehungswissenschaft hat sich die Aufmerksamkeit vom Input schulischen Lehrens und Lernens zunehmend auf die Ergebnisse (Output) bzw. Wirkungen (Outcomes) verlagert. Die Kernfrage lautet nun: Was kommt am Ende in der Schule bzw. im Unterricht eigentlich heraus? Grundlegende Voraussetzung ergebnisorienterter Steuerung schulischen Unterrichts ist die Formulierung von Bildungsstandards. Wie Bildungsstandards mit Kompetenzmodellen und konkreten Aufgabenstellungen im Unterricht des Faches "Politik & Wirtschaft" verknüpft werden können, wird in diesem Beitrag einer genaueren Analyse unterzogen. Vor dem Hintergrund bildungstheoretischer Vorstellungen im Anschluss an Immanuel Kant kommen dabei das Literacy-Konzept der Pisa-Studie sowie die "Dokumentarische Methode" nach Karl Mannheim zur Anwendung.
Resumo:
Two approaches are presented to calculate the weights for a Dynamic Recurrent Neural Network (DRNN) in order to identify the input-output dynamics of a class of nonlinear systems. The number of states of the identified network is constrained to be the same as the number of states of the plant.
Resumo:
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
Resumo:
Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.
Resumo:
This paper shows how one can infer the nature of local returns to scale at the input- or output-oriented efficient projection of a technically inefficient input-output bundle, when the input- and output-oriented measures of efficiency differ.
Resumo:
This paper is part of a set of publications related with the development of mathematical models aimed to simulate the dynamic input and output of experimental nondestructive tests in order to detect structural imperfections. The structures to be considered are composed by steel plates of thin thickness. The imperfections in these cases are cracks and they can penetrate either a significant part of the plate thickness or be micro cracks or superficial imperfections. The first class of cracks is related with structural safety and the second one is more connected to the structural protection to the environment, particularly if protective paintings can be deteriorated. Two mathematical groups of models have been developed. The first group tries to locate the position and extension of the imperfection of the first class of imperfections, i.e. cracks and it is the object of the present paper. Bending Kirchoff thin plate models belong to this first group and they are used to this respect. The another group of models is dealt with membrane structures under the superficial Rayleigh waves excitation. With this group of models the micro cracks detection is intended. In the application of the first group of models to the detection of cracks, it has been observed that the differences between the natural frequencies of the non cracked and the cracked structures are very small. However, geometry and crack position can be identified quite accurately if this comparison is carried out between first derivatives (mode rotations) of the natural modes are used instead. Finally, in relation with the analysis of the superficial crack existence the use of Rayleigh waves is very promising. The geometry and the penetration of the micro crack can be detected very accurately. The mathematical and numerical treatment of the generation of these Rayleigh waves present and a numerical application has been shown.
Resumo:
In this paper we propose a data envelopment analysis (DEA) based method for assessing the comparative efficiencies of units operating production processes where input-output levels are inter-temporally dependent. One cause of inter-temporal dependence between input and output levels is capital stock which influences output levels over many production periods. Such units cannot be assessed by traditional or 'static' DEA which assumes input-output correspondences are contemporaneous in the sense that the output levels observed in a time period are the product solely of the input levels observed during that same period. The method developed in the paper overcomes the problem of inter-temporal input-output dependence by using input-output 'paths' mapped out by operating units over time as the basis of assessing them. As an application we compare the results of the dynamic and static model for a set of UK universities. The paper is suggested that dynamic model capture the efficiency better than static model. © 2003 Elsevier Inc. All rights reserved.
Resumo:
Supply chain formation (SCF) is the process of determining the set of participants and exchange relationships within a network with the goal of setting up a supply chain that meets some predefined social objective. Many proposed solutions for the SCF problem rely on centralized computation, which presents a single point of failure and can also lead to problems with scalability. Decentralized techniques that aid supply chain emergence offer a more robust and scalable approach by allowing participants to deliberate between themselves about the structure of the optimal supply chain. Current decentralized supply chain emergence mechanisms are only able to deal with simplistic scenarios in which goods are produced and traded in single units only and without taking into account production capacities or input-output ratios other than 1:1. In this paper, we demonstrate the performance of a graphical inference technique, max-sum loopy belief propagation (LBP), in a complex multiunit unit supply chain emergence scenario which models additional constraints such as production capacities and input-to-output ratios. We also provide results demonstrating the performance of LBP in dynamic environments, where the properties and composition of participants are altered as the algorithm is running. Our results suggest that max-sum LBP produces consistently strong solutions on a variety of network structures in a multiunit problem scenario, and that performance tends not to be affected by on-the-fly changes to the properties or composition of participants.
Resumo:
We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input- output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings. © 2015 Optical Society of America.